Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements

Author:

Prata Fred

Abstract

Abstract. The Hunga volcano (21.545° S, 178.393° E; also known as Hunga Tonga-Hunga Ha′apai) erupted on 15 January 2022, producing copious amounts of aerosols that reached high into the stratosphere, exceeding 30 km and settling into layers a few kilometres deep between 22 and 28 km. The Advanced Himawari Imager (AHI) on board the geostationary Himawari-8/9 platform at 140.7° E was able to monitor the eruption at 10 min intervals and 0.25 to 4 km2 spatial resolution within 16 spectral channels ranging from visible to infrared wavelengths and over a latitude–longitude field of view of ∼ ±75°. Here a new use of these data is proposed where the limb region of the field of view is exploited to detect aerosol layers extending vertically into the atmosphere. The analyses provide vertical profiles of scattered visible light and are compared to CALIOP space lidar measurements. Hunga aerosols are detected using the ratio of near-infrared reflectances at 1.61 and 2.25 µmm in the western limb from 22 January and in the eastern limb from 31 January 2022 up until the present time (December 2023). Between January and April 2022, the average zonal velocity is estimated to be ∼ −25 m s−1 (westwards) and the meridional velocity to be ∼ 0.2 m s−1 (northwards). The latitudinal spread is characterized by a gradual northerly movement of the main layer situated between 22 and 28 km in the first 60 d, and stagnation or slight southerly spread thereafter. There is a shallow maximum of the lower stratospheric aerosol between 10 and 20° S, and the aerosol loading during 2023 is elevated compared with the 3 months prior to the eruption. The Southern Hemisphere (0–30° S) tropical lower stratospheric aerosol e-folding time is estimated to be ∼ 12 months, but the decay is not uniform and has high variability. The current methodology does not provide quantitative estimates of the amount or type of aerosol, but based on the spectral properties of water and ice clouds the analysis suggests there is a strong liquid water content in the aerosol layers.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3