Deep-Pathfinder: a boundary layer height detection algorithm based on image segmentation

Author:

Wijnands Jasper S.ORCID,Apituley ArnoudORCID,Gouveia Diego Alves,Noteboom Jan WillemORCID

Abstract

Abstract. A novel atmospheric layer detection approach has been developed based on deep learning techniques for image segmentation. Our proof of concept estimated the layering in the atmosphere, distinguishing between pollution-rich layers closer to the surface and cleaner layers aloft. Knowledge of the spatio-temporal development of atmospheric layers, such as the mixing boundary layer height (MBLH), is important for the dispersion of air pollutants and greenhouse gases, as well as for assessing the performance of numerical weather prediction systems. Existing lidar-based layer detection algorithms typically do not use the full resolution of the available data, require manual feature engineering, often do not enforce temporal consistency of the layers, and lack the ability to be applied in near-real time. To address these limitations, our Deep-Pathfinder algorithm represents the MBLH profile as a mask and directly predicts it from an image with backscatter lidar observations. Deep-Pathfinder was applied to range-corrected signal data from Lufft CHM15k ceilometers at five locations of the operational ceilometer network in the Netherlands. Input samples of 224 × 224 px were extracted, each covering a 45 min observation period. A customised U-Net architecture was developed with a nighttime indicator and MobileNetV2 encoder for fast inference times. The model was pre-trained on 19.4×106 samples of unlabelled data and fine-tuned using 50 d of high-resolution annotations. Qualitative and quantitative results showed competitive performance compared to two reference methods: the Lufft and STRATfinder algorithms, applied to the same dataset. Deep-Pathfinder enhances temporal consistency and provides near-real-time estimates at full spatial and temporal resolution. These properties make our approach valuable for application in operational networks, as near-real-time and high-resolution MBLH detection better meets the requirements of users, such as in aviation, weather forecasting, and air quality monitoring.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

Reference54 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (last access: 18 January 2024), 2015. a

2. Allabakash, S., Yasodha, P., Bianco, L., Venkatramana Reddy, S., Srinivasulu, P., and Lim, S.: Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station, J. Geophys. Res.-Atmos., 122, 9211–9232, https://doi.org/10.1002/2017JD027615, 2017. a

3. Bonin, T. A., Carroll, B. J., Hardesty, R. M., Brewer, W. A., Hajny, K., Salmon, O. E., and Shepson, P. B.: Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach, J. Atmos. Ocean. Tech., 35, 473–490, https://doi.org/10.1175/JTECH-D-17-0159.1, 2018. a

4. Bosveld, F. C.: The Cabauw in-situ observational program 2000 – present: instruments, calibrations and set-up, Technical Report TR-384, Royal Netherlands Meteorological Institute (KNMI), De Bilt, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR384.pdf (last access: 30 August 2023), 2020. a

5. Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 25, 120–125, 2000. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3