Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements

Author:

Mace Gerald G.ORCID

Abstract

Abstract. Given the importance of constraining cloud droplet number concentrations (Nd) in low-level clouds, we explore two methods for retrieving Nd from surface-based remote sensing that emphasize the information content in lidar measurements. Because Nd is the zeroth moment of the droplet size distribution (DSD), and all remote sensing approaches respond to DSD moments that are at least 2 orders of magnitude greater than the zeroth moment, deriving Nd from remote sensing measurements has significant uncertainty. At minimum, such algorithms require the extrapolation of information from two other measurements that respond to different moments of the DSD. Lidar, for instance, is sensitive to the second moment (cross-sectional area) of the DSD, while other measures from microwave sensors respond to higher-order moments. We develop methods using a simple lidar forward model that demonstrates that the depth to the maximum in lidar-attenuated backscatter (Rmax⁡) is strongly sensitive to Nd when some measure of the liquid water content vertical profile is given or assumed. Knowledge of Rmax⁡ to within 5 m can constrain Nd to within several tens of percent. However, operational lidar networks provide vertical resolutions of > 15 m, making a direct calculation of Nd from Rmax⁡ very uncertain. Therefore, we develop a Bayesian optimal estimation algorithm that brings additional information to the inversion such as lidar-derived extinction and radar reflectivity near the cloud top. This statistical approach provides reasonable characterizations of Nd and effective radius (re) to within approximately a factor of 2 and 30 %, respectively. By comparing surface-derived cloud properties with MODIS satellite and aircraft data collected during the MARCUS and CAPRICORN II campaigns, we demonstrate the utility of the methodology.

Funder

NASA Headquarters

U.S. Department of Energy

National Science Foundation

Publisher

Copernicus GmbH

Reference54 articles.

1. Albrecht, B. A., Fairall, C. W., Thomson, D. W., and White, A. B.: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumuls clouds, Geophys. Res. Lett., 17, 89–92, 1990.

2. Austin, R. T. and Stephens, G. L.: Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. algorithm formulation. J. Geophys. Res.-Atmos., 106, 28233–28242, https://doi.org/10.1029/2000jd000293, 2001.

3. Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Kramer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.​​​​​​​: Cloud ice properties: In-situ measurements and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017.​​​​​​​

4. Cadeddu, M. and Tuftedal, M.: Microwave Radiometer (MWRLOS), Atmospheric Radiation Measurement (ARM) user facility [data set], https://doi.org/10.5439/1999490, 2024.

5. Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing, J. Atmos. Ocean. Tech., 19, 431–442, https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3