Western European emission estimates of CFC-11, CFC-12 and CCl4 derived from atmospheric measurements from 2008 to 2021
-
Published:2023-07-05
Issue:13
Volume:23
Page:7383-7398
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Redington Alison L., Manning Alistair J.ORCID, Henne StephanORCID, Graziosi Francesco, Western Luke M.ORCID, Arduini JgorORCID, Ganesan Anita L.ORCID, Harth Christina M., Maione MichelaORCID, Mühle JensORCID, O'Doherty SimonORCID, Pitt JosephORCID, Reimann StefanORCID, Rigby MatthewORCID, Salameh Peter K., Simmonds Peter G., Spain T. Gerard, Stanley KieranORCID, Vollmer Martin K.ORCID, Weiss Ray F.ORCID, Young DickonORCID
Abstract
Abstract. Production and consumption of CFC-11 (trichlorofluoromethane, CCl3F), CFC-12 (dichlorodifluoromethane, CCl2F2) and CCl4 (carbon tetrachloride) are controlled under the regulations of the Montreal Protocol and have been phased out globally since 2010. Only CCl4 is still widely produced as a chemical feedstock. After 2010, emissions of CFC-11 and CFC-12 should therefore mostly originate from existing banks (e.g. from foams, mobile air conditioning units and refrigerators); however evidence has emerged of an increase in global emissions of CFC-11 in the last decade, some of which has not been fully accounted for. The motivation for this work was to assess the emissions of CFC-11, CFC-12 and CCl4 from western Europe. All countries in this region have been subject to the controls of the Montreal Protocol since the late 1980s and, as non-Article 5 Parties, have been prohibited from producing CFCs and CCl4 for dispersive use since 1996. Four different inverse modelling systems are used to estimate emissions of these gases from 2008 to 2021 using data from four atmospheric measurement stations: Mace Head (Ireland), Jungfraujoch (Switzerland), Monte Cimone (Italy) and Tacolneston (UK). The average of the four model studies found that western European emissions of CFC-11, CFC-12 and CCl4 between 2008 and 2021 were declining at 3.5 % yr−1 (2.7 % yr−1–4.8 % yr−1), 7.7 % yr−1 (6.3 % yr−1–8.0 % yr−1) and 4.4 % yr−1 (2.6 % yr−1–6.4 % yr−1), respectively. Even though the emissions were declining throughout the period, the area including northern France, Belgium, the Netherlands and Luxembourg showed consistently elevated emissions of CFC-11 compared with the surrounding regions. Emissions of CFC-12 were slightly elevated in the same region. CCl4 emissions were the highest in the south of France. France had the highest emissions of all three gases over the period 2008–2021. Emissions from western Europe (2008–2021) were on average 2.4 ± 0.4 Gg (CFC-11), 1.3 ± 0.3 Gg (CFC-12) and 0.9 ± 0.2 Gg (CCl4). Our estimated decline in emissions of CFC-11 is consistent with a western European bank release rate of 3.4 % (2.6 %–4.5 %). This study concludes that emissions of CFC-11, CFC-12 and CCl4 have all declined from 2008 to 2021 in western Europe. Therefore, no evidence is found that western European emissions contributed to the unexplained part of the global increase in atmospheric concentrations of CFC-11 observed in the last decade.
Funder
Department for Business, Energy and Industrial Strategy, UK Government Met Office National Aeronautics and Space Administration Consiglio Nazionale delle Ricerche Horizon 2020 Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference54 articles.
1. Arnold, T., Manning, A. J., Kim, J., Li, S., Webster, H., Thomson, D., Mühle, J., Weiss, R. F., Park, S., and O'Doherty, S.: Inverse modelling of CF4 and NF3 emissions in East Asia, Atmos. Chem. Phys., 18, 13305–13320, https://doi.org/10.5194/acp-18-13305-2018, 2018. a 2. Brunner, D., Arnold, T., Henne, S., Manning, A., Thompson, R. L., Maione, M., O'Doherty, S., and Reimann, S.: Comparison of four inverse modelling systems applied to the estimation of HFC-125, HFC-134a, and SF6 emissions over Europe, Atmos. Chem. Phys., 17, 10651–10674, https://doi.org/10.5194/acp-17-10651-2017, 2017. a 3. Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B. D., Hossaini, R., Laube, J. C., and Yvon-Lewis, S. A.: OzoneDepleting Substances
(ODSs) and Other Gases of Interest to the Montreal Protocol, Chap. 1 in
Scientific Assessment of Ozone Depletion, Global Ozone Research and
Monitoring Project, Report No. 55, World Meteorological Organization, Geneva, Switzerland, ISBN 9789966076014, 2014. a 4. CIESIN: Gridded Population of the World, Center for International Earth Science Information Network – Columbia University, NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, Gridded Population of the World Revision 11, https://doi.org/10.7927/H4JW8BX5, 2018. a 5. Cunnold, D. M., Prinn, R. G., Rasmussen, R. A., Simmonds, P. G., Alyea, F. N., Cardelino, C. A., Crawford, A. J., Fraser, P. J., and Rosen, R. D.: The Atmospheric Lifetime Experiment: 3. Lifetime methodology and application to three years of CFC-l3 data, J. Geophys. Res.-Oceans, 88, 8379–8400, https://doi.org/10.1029/JC088iC13p08379, 1983. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|