Impacts of urbanization on air quality and the related health risks in a city with complex terrain

Author:

Zhan Chenchao,Xie MinORCID,Lu Hua,Liu Bojun,Wu Zheng,Wang Tijian,Zhuang BingliangORCID,Li Mengmeng,Li Shu

Abstract

Abstract. Urbanization affects air pollutants via urban expansion and emission growth, thereby inevitably changing the health risks involved with air pollutants. However, the health risks related to urbanization are rarely estimated, especially for cities with complex terrain. In this study, a highly urbanized city with severe air pollution and complex terrain (Chengdu) is selected to explore this issue. The effects of urban expansion are further compared with emission growth because air quality management is usually achieved by regulating anthropogenic emissions. Air pollution in Chengdu was mainly caused by PM2.5 and O3 from 2015 to 2021. PM2.5 pollution tended to appear in cold months (November to February) owing to the blocking of air and the stable atmospheric layer, whereas O3 pollution was likely to occur in warm months (April to August) that experience high-temperature and strong-sunlight conditions and are dominated by high-pressure systems. From 2015 to 2021, the 7-year annual average of premature mortality from all non-accidental causes (ANACs) due to PM2.5 and O3 was 9386 (95 % confidence interval (CI) of 6542–11 726) and 8506 (95 % CI of 4817–11 882), respectively. Based on the characteristics of PM2.5 and O3, six numerical experiments were conducted to investigate the impacts of urban expansion and emission growth on the health risks related to air pollutants. The results show that urban land use led to an increase in the air temperature and boundary layer height compared with cropland, which was conducive to the diffusion of PM2.5. Thus, the monthly average surface PM2.5 concentrations decreased by 10.8 µg m−3 (7.6 %) in January. However, the monthly average daily maximum 8 h average (MDA8) O3 concentrations increased by 10.6 µg m−3 (6.0 %) in July owing to the stronger photochemical production and better vertical mixing during daytime. In this case, premature mortality from ANACs due to PM2.5 decreased by 171 (95 % CI of 129–200, or about 6.9 %) in January, and that due to O3 increased by 203 (95 % CI of 122–268, or about 9.5 %) in July. As for the effects of emission growth, the monthly average PM2.5 and MDA8 O3 concentrations increased by 23.9 (16.8 %) and 4.8 µg m−3 (2.7 %), respectively, when anthropogenic emissions were taken into account. Premature mortality from ANACs due to PM2.5 and O3 then increased by 388 (95 % CI of 291–456, or about 15.7 %) and 87 (95 % CI of 54–112, or about 4.1 %), respectively. From a health risk perspective, the effects of urban land use on the health risks related to PM2.5 are about half that of anthropogenic emissions, whereas the effects of urban land use on the health risks related to O3 can be 2 times that of anthropogenic emissions. This emphasizes that, in addition to regulating anthropogenic emissions, urban planning is also important for urban air quality, especially for secondary pollutants like O3.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Aneja, V. P., Mathur, R., Arya, S. P., Li, Y. X., Murray, G. C., and Manuszak, T. L.: Coupling the vertical distribution of ozone in the atmospheric boundary layer, Environ. Sci. Technol., 34, 2324–2329, https://doi.org/10.1021/es990997+, 2000.

2. Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling, Environ. Health Perspect., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010.

3. Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.: Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's Salt Lake Valley, Environ. Sci. Technol., 51, 5941–5950, https://doi.org/10.1021/acs.est.6b06603, 2017.

4. Bahreini, R., Ahmadov, R., McKeen, S. A., Vu, K. T., Dingle, J. H., Apel, E. C., Blake, D. R., Blake, N., Campos, T. L., Cantrell, C., Flocke, F., Fried, A., Gilman, J. B., Hills, A. J., Hornbrook, R. S., Huey, G., Kaser, L., Lerner, B. M., Mauldin, R. L., Meinardi, S., Montzka, D. D., Richter, D., Schroeder, J. R., Stell, M., Tanner, D., Walega, J., Weibring, P., and Weinheimer, A.: Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling, Atmos. Chem. Phys., 18, 8293–8312, https://doi.org/10.5194/acp-18-8293-2018, 2018.

5. Baklanov, A., Molina, L. T., and Gauss, M.: Megacities, air quality and climate, Atmos. Environ., 126, 235–249, https://doi.org/10.1016/j.atmosenv.2015.11.059, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3