Insights into the size-resolved dust emission from field measurements in the Moroccan Sahara

Author:

González-Flórez CristinaORCID,Klose MartinaORCID,Alastuey AndrésORCID,Dupont Sylvain,Escribano JerónimoORCID,Etyemezian Vicken,Gonzalez-Romero Adolfo,Huang YueORCID,Kandler Konrad,Nikolich George,Panta AgneshORCID,Querol Xavier,Reche Cristina,Yus-Díez JesúsORCID,Pérez García-Pando CarlosORCID

Abstract

Abstract. The particle size distribution (PSD) of mineral dust has a strong effect on the impacts of dust on climate. However, our understanding of the emitted dust PSD, including its variability and the fraction of super-coarse dust (diameter >10 µm), remains limited. Here, we provide new insights into the size-resolved dust emission process based on a field campaign performed in the Moroccan Sahara in September 2019 in the context of the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) project. The obtained dust concentration and diffusive flux PSDs show significant dependencies upon the friction velocity (u*), wind direction and type of event (regular events versus haboob events). For instance, the number fraction of sub-micrometre particles increases with u*, along with a large decrease in the mass fraction of super-coarse dust. We identify dry deposition, which is modulated by u* and fetch length, as a potential cause for this PSD variability. Using a resistance model constrained with field observations to estimate the dry deposition flux and thereby also the emitted dust flux, we show that deposition could represent up to ∼90 % of the emission of super-coarse particles (>10 µm) and up to ∼65 % of the emission of particles as small as ∼5 µm in diameter. Importantly, removing the deposition component significantly reduces the variability with u* in the PSD of the emitted dust flux compared with the diffusive flux, particularly for super-coarse dust. The differences between regular and haboob event concentration and diffusive flux PSDs are suspected to result from a smaller and variable dust source fetch during the haboob events, and/or an increased resistance of soil aggregates to fragmentation associated with the observed increase in relative humidity along the haboob outflow. Finally, compared to the invariant emitted dust flux PSD estimated based on brittle fragmentation theory, we obtain a substantially higher proportion of super-micrometre particles in the dust flux. Overall, our results suggest that dry deposition needs to be adequately considered to estimate the emitted PSD, even in studies limited to the fine and coarse size ranges (<10 µm).

Funder

H2020 European Research Council

Agència de Gestió d'Ajuts Universitaris i de Recerca

AXA Research Fund

Helmholtz Association

Deutsche Forschungsgemeinschaft

Earth Institute, Columbia University

Center for Hierarchical Manufacturing, National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3