Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
-
Published:2023-06-23
Issue:12
Volume:23
Page:7001-7014
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wallis Sandra, Schmidt HaukeORCID, von Savigny Christian
Abstract
Abstract. Explosive volcanic eruptions emitting large amounts of sulfur can alter the temperature of the lower stratosphere and change the circulation of the middle atmosphere. The dynamical response of the stratosphere to strong volcanic eruptions has been the subject of numerous studies. The impact of volcanic eruptions on the mesosphere is less well understood because of a lack of large eruptions in the satellite era and only sparse observations before that period. Nevertheless, some measurements indicated an increase in mesospheric mid-latitude temperatures after the 1991 Pinatubo eruption. The aim of this study is to uncover potential dynamical mechanisms that may lead to such a mesospheric temperature response. We use the Upper-Atmospheric ICOsahedral Non-hydrostatic (UA-ICON) model to simulate the atmospheric response to an idealized strong volcanic injection of 20 Tg S into the stratosphere (about twice as much as the eminent 1991 Pinatubo eruption). Two experiments with differently parameterized effects of sub-grid-scale orography are compared to test the impact of different atmospheric background states. The simulations show a significant warming of the polar summer mesopause of up to 15–21 K in the first November after the eruption. We argue that this is mainly due to intrahemispheric dynamical coupling in the summer hemisphere and is potentially enhanced by interhemispheric coupling with the winter stratosphere. This study focuses on the first austral summer after the eruption because mesospheric temperature anomalies are especially relevant for the properties of noctilucent clouds, whose season peaks around January in the Southern Hemisphere.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference63 articles.
1. Andrews, D. G.: On the interpretation of the eliassen-palm flux divergence,
Q. J. Roy. Meteor. Soc., 113, 323–338,
https://doi.org/10.1002/qj.49711347518, 1987. a 2. Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R., and Newman, P. A.: The
Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at
Southern and Northern Midlatitudes, J. Atmos. Sci., 70,
894–900, https://doi.org/10.1175/JAS-D-12-0143.1, 2013. a 3. Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013. a 4. Azoulay, A., Schmidt, H., and Timmreck, C.: The Arctic Polar Vortex Response to
Volcanic Forcing of Different Strengths, J. Geophys. Res.-Atmos., 126, e2020JD034450,
https://doi.org/10.1029/2020JD034450, 2021. a, b 5. Bates, D. R. and Massey, H. S. W.: Some problems concerning the terrestrial
atmosphere above about the 100 km level, P. Roy. Soc.
Lond. A Mat., 253, 451–462,
https://doi.org/10.1098/rspa.1959.0207, 1959. a
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|