Evolution and chemical characteristics of organic aerosols during wintertime PM2.5 episodes in Shanghai, China: insights gained from online measurements of organic molecular markers

Author:

Zhu Shuhui,Zhou Min,Qiao Liping,Huang Dan Dan,Wang QiongqiongORCID,Wang Shan,Gao Yaqin,Jing Shengao,Wang Qian,Wang Hongli,Chen Changhong,Huang ChengORCID,Yu Jian ZhenORCID

Abstract

Abstract. Organic aerosol (OA) is a significant part of urban fine particulate matter (PM2.5), and a lack of detailed knowledge of their sources has increasingly hindered the improvement of air quality in China in recent years, as significant reductions have been achieved in inorganic ion constituents. In this study, a wide range of organic molecular markers in PM2.5 were monitored with a bi-hourly time resolution using a thermal desorption aerosol gas chromatograph system (TAG) in urban Shanghai in winter 2019. The molecular marker data have provided a unique source tracking ability in characterizing the evolution of organic aerosols during nine wintertime episodic events. Episodes primarily influenced by local air masses were characterized with higher proportions in PM2.5 and mass increments of both primary and secondary OA. Rapid increases in both the absolute mass concentration and relative proportion were observed for primary and secondary OA markers, indicative of vehicle emissions (e.g., alkanes, hopanes, and 2,3-dihydroxy-4-oxopentanoic acid) and cooking activities (e.g., saturated and unsaturated fatty acids and C9 acids). In comparison, episodes under significant influences of transported air mass were typically associated with a predominant PM2.5 contribution from secondary inorganic aerosols and enhanced OA contribution from biomass burning activities. The latter was evident from the tracer data (e.g., levoglucosan, aromatic polycarboxylic acids, and nitroaromatic compounds). Secondary OA markers associated with later-generation products of the hydrocarbon oxidation process, such as C3−5 dicarboxylic acids, were the most deficient during local episodes, while notably enhanced during the episodes under the influence of transported air masses, reflecting the different extent and pathways of atmospheric aging processing. The ability to distinguish the variations in the OA evolution during different types of episodes demonstrates the value of online organic molecular measurements for episodic analysis. The results indicate that control of local urban sources such as vehicular and cooking emissions would lessen severity of local episodes, while regional control of precursors for secondary inorganic aerosols and biomass burning activities would reduce PM2.5 episodes under synoptic conditions conducive for regional transport.

Funder

Science and Technology Commission of Shanghai Municipality

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

China University of Geosciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3