Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation

Author:

Montemagno AlessandroORCID,Hissler ChristopheORCID,Bense VictorORCID,Teuling Adriaan J.ORCID,Ziebel Johanna,Pfister LaurentORCID

Abstract

Abstract. Given the diverse physico-chemical properties of elements, we hypothesize that their incoherent distribution across the leaf tissues, combined with the distinct resistance to degradation that each tissue exhibits, leads to different turnover rates among elements. Moreover, litter layers of varying ages produce diverse chemical signatures in solution during the wet degradation. To verify our hypothesis, Na, K, Mg, Mn, Ca, Pb, Al and Fe were analysed together with the rare earth elements (REE) in the solid fractions and in the respective leachates of fresh leaves and different litter layers of two forested soils developed under Pseudotsuga menziesii and Fagus sylvatica L. trees. The results from the leaching experiment were also compared with the in situ REE composition of the soil solutions to clarify the impact that the litter degradation processes may have on soil solution chemical composition. Both tree species showed similar biogeochemical processes dominating the element dynamics during litter degradation. REE, Al, Fe and Pb were preferentially retained in the solid litter material, in comparison with the other cations, and their concentrations increased over time during the degradation. Accordingly, different litter fractions produced different yields of elements and REE patterns in the leachates, indicating that the tree species and the age of the litter play a role in the chemical release during degradation. In particular, the evolution of the REE patterns, relative to the age of the litter layers, allowed us to deliver new findings on REE fractionation and mobilization during litter decay. Specifically, the degradation of the litter was characterized by a decrease in the Y/Ho ratio and an increase in the LaN/YbN ratio. The relationship between these ratios provided information on the litter species-specific resistance to degradation, with Douglas-fir litter material showing a lower resistance. During the litter degradation of the two tree species, two main differences were highlighted with the help of the REE: (i) in Pseudotsuga menziesii the behaviour of Eu appeared to be linked to Ca during leaf senescence and (ii) species-specific release of organic acids during litter degradation leads to a more pronounced middle REE (MREE) enrichment in the Fagus sylvatica leachates. Finally, we showed the primary control effect that white fungi may have in Ce enrichment of soil solutions, which appears to be associated with the dissolution and/or direct transport of Ce-enriched MnO2 accumulated on the surface of the old litter due to the metabolic functioning of these microorganisms. Similar MREE and heavy REE (HREE) enrichments were also found in the leachates and the soil solutions, probably due to the higher affinity of these elements for the organic acids, which represent the primary products of organic matter degradation.

Funder

Fonds National de la Recherche Luxembourg

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3