Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine

Author:

Werner Bodo,Stutz JochenORCID,Spolaor Max,Scalone Lisa,Raecke Rasmus,Festa James,Colosimo Santo Fedele,Cheung Ross,Tsai Catalina,Hossaini RyanORCID,Chipperfield Martyn P.ORCID,Taverna Giorgio S.ORCID,Feng Wuhu,Elkins James W.,Fahey David W.ORCID,Gao Ru-Shan,Hintsa Erik J.ORCID,Thornberry Troy D.ORCID,Moore Free Lee,Navarro Maria A.,Atlas ElliotORCID,Daube Bruce C.,Pittman Jasna,Wofsy Steve,Pfeilsticker KlausORCID

Abstract

Abstract. We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV–visible (UV–vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration – Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL.Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with  ≤  15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa∕355 K∕14 km) and up to about 5 ppt at the top (70 hPa∕425 K∕18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the photochemical regime, the TOMCAT∕SLIMCAT simulations tend to slightly underpredict measured BrO for large BrO concentrations, i.e., in the upper TTL and LS. The measured BrO and modeled BrO ∕ Bryinorg ratio is further used to calculate inorganic bromine, Bryinorg. For the TTL (i.e., when [CH4]  ≥  1790 ppb), [Bryinorg] is found to increase from a mean of 2.63 ± 1.04 ppt for potential temperatures (θ) in the range of 350–360 K to 5.11 ± 1.57 ppt for θ  = 390 − 400 K, whereas in the subtropical LS (i.e., when [CH4]  ≤  1790 ppb), it reaches 7.66 ± 2.95 ppt for θ in the range of 390–400 K. Finally, for the eastern Pacific (170–90° W), the TOMCAT/SLIMCAT simulations indicate a net loss of ozone of −0.3 ppbv day−1 at the base of the TTL (θ  =  355 K) and a net production of +1.8 ppbv day−1 in the upper part (θ  =  383 K).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3