Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation
-
Published:2017-09-08
Issue:17
Volume:17
Page:10597-10618
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Athanasopoulou EleniORCID, Speyer Orestis, Brunner DominikORCID, Vogel Heike, Vogel Bernhard, Mihalopoulos Nikolaos, Gerasopoulos Evangelos
Abstract
Abstract. For the past 8 years, Greece has been experiencing a major financial crisis which, among other side effects, has led to a shift in the fuel used for residential heating from fossil fuel towards biofuels, primarily wood. This study simulates the fate of the residential wood burning aerosol plume (RWB smog) and the implications on atmospheric chemistry and radiation, with the support of detailed aerosol characterization from measurements during the winter of 2013–2014 in Athens. The applied model system (TNO-MACC_II emissions and COSMO-ART model) and configuration used reproduces the measured frequent nighttime aerosol spikes (hourly PM10 > 75 µg m−3) and their chemical profile (carbonaceous components and ratios). Updated temporal and chemical RWB emission profiles, derived from measurements, were used, while the level of the model performance was tested for different heating demand (HD) conditions, resulting in better agreement with measurements for Tmin < 9 °C. Half of the aerosol mass over the Athens basin is organic in the submicron range, of which 80 % corresponds to RWB (average values during the smog period). Although organic particles are important light scatterers, the direct radiative cooling of the aerosol plume during wintertime is found low (monthly average forcing of –0.4 W m−2 at the surface), followed by a minor feedback to the concentration levels of aerosol species. The low radiative cooling of a period with such intense air pollution conditions is attributed to the timing of the smog plume appearance, both directly (longwave radiation increases during nighttime) and indirectly (the mild effect of the residual plume on solar radiation during the next day, due to removal and dispersion processes).
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference86 articles.
1. Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A. P., Pandis, S. N., Knote, C., and Fountoukis, C.: Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign, Atmos. Chem. Phys., 13, 625–645, https://doi.org/10.5194/acp-13-625-2013, 2013. 2. Athanasopoulou, E., Rieger, D., Walter, C., Vogel, H., Karali, A., Hatzaki, M., Gerasopoulos, E., Vogel, B., Giannakopoulos, C., Gratsea, M., and Roussos, A.: Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean, Atmos. Environ., 95, 113–125, https://doi.org/10.1016/j.atmosenv.2014.05.077, 2014. 3. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. 4. Bangert, M., Kottmeier, C., Vogel, B., and Vogel, H.: Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model, Atmos. Chem. Phys., 11, 4411–4423, https://doi.org/10.5194/acp-11-4411-2011, 2011. 5. Bangert, M., Nenes, A., Vogel, B., Vogel, H., Barahona, D., Karydis, V. A., Kumar, P., Kottmeier, C., and Blahak, U.: Saharan dust event impacts on cloud formation and radiation over Western Europe, Atmos. Chem. Phys., 12, 4045–4063, https://doi.org/10.5194/acp-12-4045-2012, 2012.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|