Long-term O<sub>3</sub>–precursor relationships in Hong Kong: field observation and model simulation

Author:

Wang YuORCID,Wang HaoORCID,Guo HaiORCID,Lyu Xiaopu,Cheng Hairong,Ling Zhenhao,Louie Peter K. K.,Simpson Isobel J.,Meinardi Simone,Blake Donald R.

Abstract

Abstract. Over the past 10 years (2005–2014), ground-level O3 in Hong Kong has consistently increased in all seasons except winter, despite the yearly reduction of its precursors, i.e. nitrogen oxides (NOx =  NO + NO2), total volatile organic compounds (TVOCs), and carbon monoxide (CO). To explain the contradictory phenomena, an observation-based box model (OBM) coupled with CB05 mechanism was applied in order to understand the influence of both locally produced O3 and regional transport. The simulation of locally produced O3 showed an increasing trend in spring, a decreasing trend in autumn, and no changes in summer and winter. The O3 increase in spring was caused by the net effect of more rapid decrease in NO titration and unchanged TVOC reactivity despite decreased TVOC mixing ratios, while the decreased local O3 formation in autumn was mainly due to the reduction of aromatic VOC mixing ratios and the TVOC reactivity and much slower decrease in NO titration. However, the decreased in situ O3 formation in autumn was overridden by the regional contribution, resulting in elevated O3 observations. Furthermore, the OBM-derived relative incremental reactivity indicated that the O3 formation was VOC-limited in all seasons, and that the long-term O3 formation was more sensitive to VOCs and less to NOx and CO in the past 10 years. In addition, the OBM results found that the contributions of aromatics to O3 formation decreased in all seasons of these years, particularly in autumn, probably due to the effective control of solvent-related sources. In contrast, the contributions of alkenes increased, suggesting a continuing need to reduce traffic emissions. The findings provide updated information on photochemical pollution and its impact in Hong Kong.

Funder

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3