Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber
-
Published:2017-09-04
Issue:17
Volume:17
Page:10333-10348
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Peng Jianfei, Hu Min, Guo Song, Du Zhuofei, Shang Dongjie, Zheng Jing, Zheng Jun, Zeng Limin, Shao Min, Wu YushengORCID, Collins Don, Zhang RenyiORCID
Abstract
Abstract. Measurements of ageing and hygroscopicity variation of black carbon (BC) particles in Beijing were conducted using a 1.2 m3 quasi-atmospheric aerosol evolution study (QUALITY) chamber, which consisted of a bottom flow chamber through which ambient air was pulled continuously and an upper reaction chamber where ageing of BC particles occurred. Within the reaction chamber, transmission of the solar ultraviolet irradiation was approximately 50–60 %, wall loss of primary gaseous pollutants was negligible, and BC exhibited a half-lifetime of about 3–7 h. Typically, equilibrium for the primary gases, temperature and relative humidity between the reaction chamber and ambient air was established within 1 h. Rapid growth of BC particles occurred, with an average total growth of 77 ± 33 nm and average growth rate of 26 ± 11 nm h−1. Secondary organic aerosols (SOA) accounted for more than 90 % of the coating mass. The O ∕ C ratio of SOA was 0.5, lower than the ambient level. The hygroscopic growth factor of BC particles decreased slightly with an initial thin coating layer because of BC reconstruction, but subsequently increased to 1.06–1.08 upon further ageing. The κ (kappa) values for BC particles and coating materials were calculated as 0.035 and 0.040 at the subsaturation and supersaturation conditions, respectively, indicating low hygroscopicity of coated SOA on BC particles. Hence, our results indicate that initial photochemical ageing of BC particles leads to considerable modifications to morphology and optical properties but does not appreciably alter the particle hygroscopicity in Beijing.
Funder
National Natural Science Foundation of China Ministry of Science and Technology of the People's Republic of China Ministry of Environmental Protection
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference65 articles.
1. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. 2. Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015. 3. Claeys, M.: Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene, Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004. 4. DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Sci. Tech., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004. 5. DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|