Summertime OH reactivity from a receptor coastal site in the Mediterranean Basin
-
Published:2017-10-25
Issue:20
Volume:17
Page:12645-12658
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zannoni Nora, Gros Valerie, Sarda Esteve Roland, Kalogridis CeriseORCID, Michoud Vincent, Dusanter Sebastien, Sauvage Stephane, Locoge NadineORCID, Colomb AurelieORCID, Bonsang Bernard
Abstract
Abstract. Total hydroxyl radical (OH) reactivity, the total loss frequency of the hydroxyl radical in ambient air, provides the total loading of OH reactants in air. We measured the total OH reactivity for the first time during summertime at a coastal receptor site located in the western Mediterranean Basin. Measurements were performed at a temporary field site located in the northern cape of Corsica (France), during summer 2013 for the project CARBOSOR (CARBOn within continental pollution plumes: SOurces and Reactivity)–ChArMEx (Chemistry and Aerosols Mediterranean Experiment). Here, we compare the measured total OH reactivity with the OH reactivity calculated from the measured reactive gases. The difference between these two parameters is termed missing OH reactivity, i.e., the fraction of OH reactivity not explained by the measured compounds. The total OH reactivity at the site varied between the instrumental LoD (limit of detection = 3 s−1) to a maximum of 17 ± 6 s−1 (35 % uncertainty) and was 5 ± 4 s−1 (1σ SD – standard deviation) on average. It varied with air temperature exhibiting a diurnal profile comparable to the reactivity calculated from the concentration of the biogenic volatile organic compounds measured at the site. For part of the campaign, 56 % of OH reactivity was unexplained by the measured OH reactants (missing reactivity). We suggest that oxidation products of biogenic gas precursors were among the contributors to missing OH reactivity.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference54 articles.
1. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986. 2. Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, 197–219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003. 3. Atkinson, R., Aschmann, S. M., Winer, A. M., and Carter, W. P. L.: Rate constants for the gas phase reactions of OH radicals and O3 with pyrrole at 295 ± 1 K and atmospheric pressure, Atmos. Environ., 18, 2105–2107, https://doi.org/10.1016/0004-6981(84)90196-3, 1984. 4. Bracho-Nunez, A., Welter, S., Staudt, M., and Kesselmeier, J.: Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation, J. Geophys. Res.-Atmos., 116, D16304, https://doi.org/10.1029/2010JD015521, 2011. 5. Cappellin, L., Algarra Alarcon, A., Herdlinger-Blatt, I., Sanchez, J., Biasioli, F., Martin, S. T., Loreto, F., and McKinney, K. A.: Field observations of volatile organic compound (VOC) exchange in red oaks, Atmos. Chem. Phys., 17, 4189–4207, https://doi.org/10.5194/acp-17-4189-2017, 2017.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|