Detection of water vapour absorption around 363 nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

Author:

Lampel JohannesORCID,Pöhler DenisORCID,Polyansky Oleg L.,Kyuberis Aleksandra A.,Zobov Nikolai F.,Tennyson JonathanORCID,Lodi Lorenzo,Frieß UdoORCID,Wang YangORCID,Beirle SteffenORCID,Platt Ulrich,Wagner Thomas

Abstract

Abstract. Water vapour is known to absorb radiation from the microwave region to the blue part of the visible spectrum with decreasing efficiency. Ab initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines up to its dissociation limit at 243 nm.We present the first evidence of water vapour absorption near 363 nm from field measurements using data from multi-axis differential optical absorption spectroscopy (MAX-DOAS) and long-path (LP)-DOAS measurements. The identification of the absorptions was based on the recent POKAZATEL line list by Polyansky et al. (2017). For MAX-DOAS measurements, we observed absorption by water vapour in an absorption band around 363 nm with optical depths of up to 2 × 10−3. The retrieved column densities from 2 months of measurement data and more than 2000 individual observations at different latitudes correlate well with simultaneously measured well-established water vapour absorptions in the blue spectral range from 452 to 499 nm (R2 = 0.89), but the line intensities at around 363 nm are underestimated by a factor of 2.6  ±  0.5 by the ab initio model. At a spectral resolution of 0.5 nm, we derive a maximum cross section value of 2.7 × 10−27 cm2 molec−1 at 362.3 nm. The results were independent of the used literature absorption cross section of the O4 absorption, which overlays this water vapour absorption band. Also water vapour absorption around 376 nm was identified. Below 360 nm no water vapour absorption above 1.4 × 10−26 cm2 molec−1 was observed. The newly found absorption can have a significant impact on the spectral retrievals of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO is discussed.

Funder

Bundesministerium für Bildung und Forschung

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3