Rainfall drives atmospheric ice-nucleating particles in the coastal climate of southern Norway
-
Published:2017-09-19
Issue:18
Volume:17
Page:11065-11073
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Conen FranzORCID, Eckhardt SabineORCID, Gundersen Hans, Stohl AndreasORCID, Yttri Karl Espen
Abstract
Abstract. Ice-nucleating particles (INPs) active at modest supercooling (e.g. −8 °C; INP−8) can transform clouds from liquid to mixed phase, even at very small number concentrations (< 10 m−3). Over the course of 15 months, we found very similar patterns in weekly concentrations of INP−8 in PM10 (median = 1.7 m−3, maximum = 10.1 m−3) and weekly amounts of rainfall (median = 28 mm, maximum = 153 mm) at Birkenes, southern Norway. Most INP−8 were probably aerosolised locally by the impact of raindrops on plant, litter and soil surfaces. Major snowfall and heavy rain onto snow-covered ground were not mirrored by enhanced numbers of INP−8. Further, transport model calculations for large (> 4 m−3) and small (< 4 m−3) numbers of INP−8 revealed that potential source regions likely to provide precipitation to southern Norway were associated with large numbers of INP−8. The proportion of land cover and land use type in potential source regions was similar for large and small numbers of INP−8. In PM2. 5 we found consistently about half as many INP−8 as in PM10. From mid-May to mid-September, INP−8 correlated positively with the fungal spore markers arabitol and mannitol, suggesting that some fraction of INP−8 during that period may consist of fungal spores. In the future, warmer winters with more rain instead of snow may enhance airborne concentrations of INP−8 during the cold season in southern Norway and in other regions with a similar climate.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference49 articles.
1. Aas, W., Platt, S., Solberg, S., and Yttri, K. E.: Monitoring of long-range transported air pollutants in Norway, annual report 2014, Kjeller, NILU (Miljødirektoratet rapport, M-367/2015) (NILU OR, 20/2015), 2015. 2. Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmos. Environ., 42, 588–593, https://doi.org/10.1016/j.atmosenv.2007.10.013, 2008. 3. Belward, A. S., Estes, J. E., and Kline, K. D.: The IGBP-DIS 1-Km Land-Cover Data Set DISCover: A Project Overview, Photogramm. Eng. Rem. S., 65, 1013–1020, 1999. 4. Bigg, E. K. and Miles, G. T.: The results of large-scale measurements of natural ice nuclei, J. Atmos. Sci., 21, 396–403, 1964. 5. Bigg, E. K., Soubeyrand, S., and Morris, C. E.: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause, Atmos. Chem. Phys., 15, 2313–2326, https://doi.org/10.5194/acp-15-2313-2015, 2015.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|