Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene
-
Published:2017-12-21
Issue:24
Volume:17
Page:15137-15150
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Dillon Terry J.ORCID, Dulitz Katrin, Groß Christoph B. M., Crowley John N.ORCID
Abstract
Abstract. Pulsed laser methods for OH generation and detection were used to study atmospheric degradation reactions for three important biogenic gases: OH + isoprene (Reaction R1), OH +α-pinene (Reaction R2) and OH + Δ-3-carene (Reaction R3). Gas-phase rate coefficients were characterized by non-Arrhenius kinetics for all three reactions. For (R1), k1 (241–356 K) = (1.93±0.08) × 10−11exp{(466±12)∕T} cm3 molecule−1 s−1 was determined, with a room temperature value of k1 (297 K) = (9.3±0.4) × 10−11 cm3 molecule−1 s−1, independent of bath-gas pressure (5–200 Torr) and composition (M = N2 or air). Accuracy and precision were enhanced by online optical monitoring of isoprene, with absolute concentrations obtained via an absorption cross section, σisoprene = (1.28±0.06) × 10−17 cm2 molecule−1 at λ = 184.95 nm, determined in this work. These results indicate that significant discrepancies between previous absolute and relative-rate determinations of k1 result in part from σ values used to derive the isoprene concentration in high-precision absolute determinations.Similar methods were used to determine rate coefficients (in 10−11 cm3 molecule−1 s−1) for (R2)–(R3): k2 (238–357 K) = (1.83±0.04) × exp{(330±6)∕T} and k3 (235–357 K) = (2.48±0.14) × exp{(357±17)∕T}. This is the first temperature-dependent dataset for (R3) and enables the calculation of reliable atmospheric lifetimes with respect to OH removal for e.g. boreal forest springtime conditions. Room temperature values of k2 (296 K) = (5.4±0.2) × 10−11 cm3 molecule−1 s−1 and k3 (297 K) = (8.1±0.3) × 10−11 cm3 molecule−1 s−1 were independent of bath-gas pressure (7–200 Torr, N2 or air) and in good agreement with previously reported values. In the course of this work, 184.95 nm absorption cross sections were determined: σ = (1.54±0.08) × 10−17 cm2 molecule−1 for α-pinene and (2.40±0.12) × 10−17 cm2 molecule−1 for Δ-3-carene.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference48 articles.
1. Atkinson, R., Aschmann, S. M., and Pitts, J. N.: Rate constants for the gas-phase reactions of the OH-radical with a series of monoterpenes at 298 +∕ − 1 K, Int. J. Chem. Kinet., 18, 287–299, https://doi.org/10.1002/kin.550180303, 1986. 2. Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, S197–S219, https://doi.org/10.1016/s1352-2310(03)00391-1, 2003. 3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006a. 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006b. 5. Back, J., Hari, P., Hakola, H., Juurola, E., and Kulmala, M.: Dynamics of monoterpene emissions in Pinus sylvestris during early spring, Boreal Environ. Res., 10, 409–424, 2005.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|