What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India?

Author:

Chandra Naveen,Hayashida Sachiko,Saeki TazuORCID,Patra Prabir K.ORCID

Abstract

Abstract. Methane (CH4) is one of the most important short-lived climate forcers for its critical roles in greenhouse warming and air pollution chemistry in the troposphere, and the water vapor budget in the stratosphere. It is estimated that up to about 8 % of global CH4 emissions occur from South Asia, covering less than 1 % of the global land. With the availability of satellite observations from space, variability in CH4 has been captured for most parts of the global land with major emissions, which were otherwise not covered by the surface observation network. The satellite observation of the columnar dry-air mole fractions of methane (XCH4) is an integrated measure of CH4 densities at all altitudes from the surface to the top of the atmosphere. Here, we present an analysis of XCH4 variability over different parts of India and the surrounding cleaner oceanic regions as measured by the Greenhouse gases Observation SATellite (GOSAT) and simulated by an atmospheric chemistry-transport model (ACTM). Distinct seasonal variations of XCH4 have been observed over the northern (north of 15° N) and southern (south of 15° N) parts of India, corresponding to the peak during the southwestern monsoon (July–September) and early autumn (October–December) seasons, respectively. Analysis of the transport, emission, and chemistry contributions to XCH4 using ACTM suggests that a distinct XCH4 seasonal cycle over northern and southern regions of India is governed by both the heterogeneous distributions of surface emissions and a contribution of the partial CH4 column in the upper troposphere. Over most of the northern Indian Gangetic Plain regions, up to 40 % of the peak-to-trough amplitude during the southwestern (SW) monsoon season is attributed to the lower troposphere ( ∼  1000–600 hPa), and  ∼  40 % to uplifted high-CH4 air masses in the upper troposphere ( ∼  600–200 hPa). In contrast, the XCH4 seasonal enhancement over semi-arid western India is attributed mainly ( ∼  70 %) to the upper troposphere. The lower tropospheric region contributes up to 60 % in the XCH4 seasonal enhancement over the Southern Peninsula and oceanic region. These differences arise due to the complex atmospheric transport mechanisms caused by the seasonally varying monsoon. The CH4 enriched air mass is uplifted from a high-emission region of the Gangetic Plain by the SW monsoon circulation and deep cumulus convection and then confined by anticyclonic wind in the upper tropospheric heights ( ∼  200 hPa). The anticyclonic confinement of surface emission over a wider South Asia region leads to a strong contribution of the upper troposphere in the formation of the XCH4 peak over northern India, including the semi-arid regions with extremely low CH4 emissions. Based on this analysis, we suggest that a link between surface emissions and higher levels of XCH4 is not always valid over Asian monsoon regions, although there is often a fair correlation between surface emissions and XCH4. The overall validity of ACTM simulation for capturing GOSAT observed seasonal and spatial XCH4 variability will allow us to perform inverse modeling of XCH4 emissions in the future using XCH4 data.

Funder

Ministry of the Environment, Government of Japan

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3