Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method

Author:

Salma ImreORCID,Németh Zoltán,Weidinger Tamás,Maenhaut WillyORCID,Claeys MagdaORCID,Molnár Mihály,Major István,Ajtai Tibor,Utry Noémi,Bozóki ZoltánORCID

Abstract

Abstract. An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m−3, respectively. The EC and organic matter (1.6  ×  OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36 % of the total carbon (TC  =  EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon–levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF) to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB) were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO) made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal to OCFF was substantial. The mean contribution of BB to EC particles was smaller by a factor of approximately 2 than that of road traffic. The main formation processes of OCFF, OCBB and OCBIO from volatile organic compounds were jointly influenced by a common factor, which is most likely the atmospheric photochemistry, while primary organic emissions can also be important. Technological improvements and control measures for various BB appliances, together with efficient education and training of their users, in particular on the admissible fuel types, offer an important potential for improving the air quality in Budapest, and likely in other cities as well.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3