Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
-
Published:2017-10-26
Issue:20
Volume:17
Page:12697-12708
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sanchez Guadalupe, Serrano AntonioORCID, Cancillo María Luisa
Abstract
Abstract. Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.
Funder
Ministerio de Economía y Competitividad Consejería de Educación y Empleo, Junta de Extremadura
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Alados, I., Foyo-Moreno, I., Olmo, F. J., and Alados-Arboledas, L.: Estimation of photosynthetically active radiation under cloudy conditions, Agr. Forest Meteorol., 102, 39–50, 2000. 2. Arola, A., Lakkala, K., Bais, A., Kaurola, J., Meleti, C., and Taalas, P.: Factors affecting short- and long-term changes of spectral UV irradiance at two European stations, J. Geophys. Res., 108, 4549, https://doi.org/10.1029/2003JD003447, 2003. 3. Badarinath, K. V., Kharol, S. K., Kaskaoutis, D. G., and Kambezidis, H. D.: Case study of a dust storm over Hyderabad area, India: its impact on solar radiation using satellite data and ground measurements, Sci. Total Environ., 384, 316–332, 2007. 4. Bais, A. F., Tourpali, K., Kazantzidis, A., Akiyoshi, H., Bekki, S., Braesicke, P., Chipperfield, M. P., Dameris, M., Eyring, V., Garny, H., Iachetti, D., Jöckel, P., Kubin, A., Langematz, U., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Newman, P. A., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., and Yamashita, Y.: Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects, Atmos. Chem. Phys., 11, 7533–7545, https://doi.org/10.5194/acp-11-7533-2011, 2011. 5. Boland, J., Scott, L., and Luther, M.: Modelling the diffuse fraction of global solar radiation on a horizontal surface, Environmetrics, 12, 103–116, 2001.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|