Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations
-
Published:2017-10-17
Issue:20
Volume:17
Page:12303-12325
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Vasileva Anastasia, Moiseenko Konstantin, Skorokhod AndreyORCID, Belikov Igor, Kopeikin Vladimir, Lavrova Olga
Abstract
Abstract. Boreal forest fires are currently recognized as a significant factor in climate change and air quality problems. Although emissions of biomass burning products are widely measured in many regions, there is still lack of information on the composition of wildfire emissions in Siberia, a region known for its severe wildfire activity. Emission ratios (ERs) are important characteristics of wildfire emissions as they may be used to calculate the mass of species emitted into the atmosphere due to combustion of a known mass of biomass fuel. We analyze observations of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), total nonmethane hydrocarbons (NMHCs), nitrogen oxides NOx ( = NO + NO2), particulate matter (PM3), and black carbon (BC) within two forest fire plume transects made by the moving railway observatory during TRanscontinental Observations Into the Chemistry of the Atmosphere (TROICA) expeditions. Slopes in linear regressions of excess levels of the pollutants are used to obtain ERCO ∕ CO2 = 10–15 %, ERCH4 ∕ CO = 8–10 %, ERNMHC ∕ CO = 0.11–0.21 % ppmC ppmC−1, ERNOx ∕ CO = 1.5–3.0 ppb ppm−1, ERPM3 ∕ CO = 320–385 ng m−3 (µg m−3)−1, and ERBC ∕ CO = 6.1–6.3 µg m−3 ppm−1, which fall within the range of uncertainty of the previous estimates, being at the higher edge for ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM3 ∕ CO and at the lower edge for ERNOx ∕ CO. The relative uncertainties comprise 5–15 % of the estimated ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM ∕ CO and 10–20 % of ERNOx ∕ CO, ERCO ∕ CO2, and ERBC ∕ CO. The uncertainties are lower than in many other similar studies and associated mainly with natural variability of wildfire emissions.
Funder
Russian Science Foundation Russian Foundation for Basic Research
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference127 articles.
1. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 2. Alvarado, M. J. and Prinn, R. G.: Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies, J. Geophys. Res., 114, D09306, https://doi.org/10.1029/2008JD011144, 2009. 3. Amiro, B. D., Cantin, A., Flannigan, M. D., and de Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. Forest Res., 39, 383–395, https://doi.org/10.1139/X08-154, 2009. 4. Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., and Sorensen, D.: LAPACK Users' Guide, third edn., Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999. 5. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|