Forecast score distributions with imperfect observations

Author:

Bessac Julie,Naveau PhilippeORCID

Abstract

Abstract. The field of statistics has become one of the mathematical foundations in forecast evaluation studies, especially with regard to computing scoring rules. The classical paradigm of scoring rules is to discriminate between two different forecasts by comparing them with observations. The probability distribution of the observed record is assumed to be perfect as a verification benchmark. In practice, however, observations are almost always tainted by errors and uncertainties. These may be due to homogenization problems, instrumental deficiencies, the need for indirect reconstructions from other sources (e.g., radar data), model errors in gridded products like reanalysis, or any other data-recording issues. If the yardstick used to compare forecasts is imprecise, one can wonder whether such types of errors may or may not have a strong influence on decisions based on classical scoring rules. We propose a new scoring rule scheme in the context of models that incorporate errors of the verification data. We rely on existing scoring rules and incorporate uncertainty and error of the verification data through a hidden variable and the conditional expectation of scores when they are viewed as a random variable. The proposed scoring framework is applied to standard setups, mainly an additive Gaussian noise model and a multiplicative Gamma noise model. These classical examples provide known and tractable conditional distributions and, consequently, allow us to interpret explicit expressions of our score. By considering scores to be random variables, one can access the entire range of their distribution. In particular, we illustrate that the commonly used mean score can be a misleading representative of the distribution when the latter is highly skewed or has heavy tails. In a simulation study, through the power of a statistical test, we demonstrate the ability of the newly proposed score to better discriminate between forecasts when verification data are subject to uncertainty compared with the scores used in practice. We apply the benefit of accounting for the uncertainty of the verification data in the scoring procedure on a dataset of surface wind speed from measurements and numerical model outputs. Finally, we open some discussions on the use of this proposed scoring framework for non-explicit conditional distributions.

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Reference52 articles.

1. Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Clim., 9, 1518–1530, 1996. a

2. Bessac, J., Constantinescu, E., and Anitescu, M.: Stochastic simulation of predictive space–time scenarios of wind speed using observations and physical model outputs, Ann. Appl. Stat., 12, 432–458, 2018. a, b, c, d, e

3. Bessac, J.: Codes for scoring under uncertain verification data, available at: https://github.com/jbessac/uncertainty_scoring, GitHub [code], last access: 8 September 2021. a

4. Bolin, D. and Wallin, J.: Scale invariant proper scoring rules Scale dependence: Why the average CRPS often is inappropriate for ranking probabilistic forecasts, arXiv preprint arXiv:1912.05642, available at: https://arxiv.org/abs/1912.05642 (last access: 8 September 2021), 2019. a, b, c

5. Bowler, N. E.: Accounting for the effect of observation errors on verification of MOGREPS, Meteorol. Appl., 15, 199–205, 2008. a

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3