Evaluation of near-tropopause ozone distributions in the Global Modeling Initiative combined stratosphere/troposphere model with ozonesonde data

Author:

Considine D. B.,Logan J. A.,Olsen M. A.

Abstract

Abstract. The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. At the tropopause, model ozone is high-biased in the SH tropics and NH midlatitudes by ~45% in a 4° latitude ×5° longitude model simulation. Doubling the resolution to 2°×2.5° increases the NH high bias to ~60%, and reduces the tropical bias to ~30%, apparently due to decreased horizontal transport between the tropics and extratropics in the higher-resolution simulation. These ozone biases do not appear to be due to an overly vigorous residual circulation, insufficient convection, or excessive stratosphere/troposphere exchange, and so may be due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. Compared to the pressure-averaged climatology, NH and tropical mean model lower stratospheric biases are >20%. In the upper troposphere, the 2°×2.5° simulation shows mean high biases of ~20% and ~35% during April in the tropics and NH midlatitudes, respectively. This apparently good model/measurement agreement degrades when relative-to-tropopause averages are considered, with upper troposphere high biases of ~30% and 70% in the tropics and NH midlatitudes. This occurs because relative-to-tropopause averaging better preserves the larger cross-tropopause O3 gradients which are seen in the daily sonde data, but not in daily model profiles. Relative-to-tropopause averages therefore more accurately reveal model/measurement discrepancies. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the near-tropopause annual cycle is weak. This is likely due to the annual amplitude of mean vertical upwelling near the tropopause, which analysis suggests is ~30% weaker than in the real atmosphere.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3