Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging

Author:

Emmert Adrian,Kneisel Christof

Abstract

Abstract. Interactions between different formative processes are reflected in the internal structure of rock glaciers. Therefore, the detection of subsurface conditions can help to enhance our understanding of landform development. For an assessment of subsurface conditions, we present an analysis of the spatial variability of active layer thickness, ground ice content and frost table topography for two different rock glaciers in the Eastern Swiss Alps by means of quasi-3-D electrical resistivity imaging (ERI). This approach enables an extensive mapping of subsurface structures and a spatial overlay between site-specific surface and subsurface characteristics. At Nair rock glacier, we discovered a gradual descent of the frost table in a downslope direction and a constant decrease of ice content which follows the observed surface topography. This is attributed to ice formation by refreezing meltwater from an embedded snow bank or from a subsurface ice patch which reshapes the permafrost layer. The heterogeneous ground ice distribution at Uertsch rock glacier indicates that multiple processes on different time domains were involved in the development. Resistivity values which represent frozen conditions vary within a wide range and indicate a successive formation which includes several advances, past glacial overrides and creep processes on the rock glacier surface. In combination with the observed topography, quasi-3-D ERI enables us to delimit areas of extensive and compressive flow in close proximity. Excellent data quality was provided by a good coupling of electrodes to the ground in the pebbly material of the investigated rock glaciers. Results show the value of the quasi-3-D ERI approach but advise the application of complementary geophysical methods for interpreting the results.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3