Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC
-
Published:2009-09-29
Issue:18
Volume:9
Page:7243-7256
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Cheng Y.,He K. B.,Duan F. K.,Zheng M.,Ma Y. L.,Tan J. H.
Abstract
Abstract. Accurate measurement of carbonaceous aerosols is challenging, due to the sampling artifact and the problems of the split of OC/EC. Two approaches have been used to account for the positive artifact: backup quartz approach in which a backup quartz filter is placed either behind a front quartz filter (QBQ) or in a parallel port behind a Teflon filter (QBT), and organic denuder approach in which an organic denuder is placed upstream of the quartz filter. Both approaches were evaluated in Beijing, China, from January to February 2009. 10% of the OC captured by the bare quartz filter was from the positive artifact. The origin of backup OC was quantitatively evaluated by the denuder-based method. All of the QBQ OC was from gaseous organics passing through the front filter, but the QBQ had not reached equilibrium with gas phase due to the relative small sampling volume resulting in an undercorrection of the positive artifact by 3.7%. QBT OC was from both gaseous organics passing through the front filter (82%) and the evaporated organic carbon (18%), thus overcorrecting the positive artifact by 6.3%. Even the positive artifact-contributed QBT OC was found to overestimate the positive artifact, perhaps due to the difference in the adsorption properties of the loaded filter and the filter without particle loading. Re-partitioning of PC and EC was performed by the multiple linear regression approach. The attenuation coefficient of PC was twofold higher than that of EC, indicating PC was darker than EC, resulting in the underestimation of native EC by TOT-split-EC. It was also found that PC formed on the bare quartz filter (45.56 m2/g) was darker than that formed on the denuded filter (38.64 m2/g), indicating that the underestimation for the bare quartz filter was more significant.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference77 articles.
1. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, 2006. 2. Cabada, J. C., Pandis, S. N., Subramanian, R., Robinson, A. L., Polidori, A., and Turpin, B.: Estimating the Secondary Organic Aerosol Contribution to PM2.5 Using the EC Tracer Method, Aerosol Sci. Tech., 38, 140–155, 2004. 3. Chan, C. K. and Yao, X. H.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2009. 4. Cheng, Y., He, K. B., Duan, F. K., Zheng, M., Ma, Y. L., and Tan, J. H.: Measurement of semivolatile carbonaceous aerosols and its implications: a review, Environ. Int., 35, 674–681, 2009. 5. Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., and Merrifield, T.: Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Tech., 34, 23–34, 2001.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|