Experimental quantification of contact freezing in an electrodynamic balance
-
Published:2013-09-12
Issue:9
Volume:6
Page:2373-2382
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Hoffmann N., Kiselev A.ORCID, Rzesanke D.ORCID, Duft D.ORCID, Leisner T.
Abstract
Abstract. Heterogeneous nucleation of ice in a supercooled water droplet induced by external contact with a dry aerosol particle has long been known to be more effective than freezing induced by the same nucleus immersed in the droplet. However, the experimental quantification of contact freezing is challenging. Here we report an experimental method to determine the temperature-dependent ice nucleation probability of size-selected aerosol particles. The method is based on the suspension of supercooled charged water droplets in a laminar flow of air containing aerosol particles as contact freezing nuclei. The rate of droplet–particle collisions is calculated numerically with account for Coulomb attraction, drag force and induced dipole interaction between charged droplet and aerosol particles. The calculation is verified by direct counting of aerosol particles collected by a levitated droplet. By repeating the experiment on individual droplets for a sufficient number of times, we are able to reproduce the statistical freezing behavior of a large ensemble of supercooled droplets and measure the average rate of freezing events. The freezing rate is equal to the product of the droplet–particle collision rate and the probability of freezing on a single contact, the latter being a function of temperature, size and composition of the contact ice nuclei. Based on these observations, we show that for the types of particles investigated so far, contact freezing is the dominating freezing mechanism on the timescale of our experiment.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference43 articles.
1. Allen, M. and Raabe, O.: Re-evaluation of millikan's oil drop data for the motion of small particles in air, J. Aerosol Sci., 13, 537–547, https://doi.org/10.1016/0021-8502(82)90019-2, 1982. 2. Avramov, A., Ackerman, A. S., Fridlind, A. M., van Diedenhoven, B., Botta, G., Aydin, K., Verlinde, J., Korolev, A. V., Strapp, J. W., McFarquhar, G. M., Jackson, R., Brooks, S. D., Glen, A., and Wolde, M.: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC, J. Geophys. Res., 116, D00T08, https://doi.org/10.1029/2011jd015910, 2011. 3. Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, 2004. 4. Bunker, K. W., China, S., Mazzoleni, C., Kostinski, A., and Cantrell, W.: Measurements of ice nucleation by mineral dusts in the contact mode, Atmos. Chem. Phys. Discuss., 12, 20291–20309, https://doi.org/10.5194/acpd-12-20291-2012, 2012. 5. Carmichael, R. S.: Handbook of Physical Properties of Rocks, CRC Press, Boca Raton, FL, United-States, 1982.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|