Non-climatic signal in ice core records: lessons from Antarctic mega-dunes
Author:
Ekaykin A.ORCID, Eberlein L., Lipenkov V., Popov S., Scheinert M., Schröder L.ORCID, Turkeev A.
Abstract
Abstract. We present the results of glaciological investigations in the mega-dune area located 30 km to the east from Vostok Station (central East Antarctica) implemented during the 58th, 59th and 60th Russian Antarctic Expedition (January 2013–January 2015). Snow accumulation rate and isotope content (δD, δ18O and δ17O) were measured along the 2 km profile across the mega-dune ridge accompanied by precise GPS altitude measurements and GPR survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by one order of magnitude within the distance < 1 km, with the reduced accumulation at the leeward slope of the dune and increased accumulation in the hollow between the dunes. At the same time, the accumulation rate averaged over the length of a dune wave (22 mm we) corresponds well with the value obtained at Vostok Station, which suggests no additional wind-driven snow sublimation in the mega-dunes compared to the surrounding plateau. The snow isotopic composition is in negative correlation with the snow accumulation. Analyzing dxs/δD and 17O-excess/δD slopes, we conclude that the spatial variability of the snow isotopic composition in the mega-dune area could be explained by post-depositional snow modifications. Using the GPR data, we estimated the apparent dune drift velocity (4.6 ± 1.1 m yr−1). The full cycle of the dune drift is thus about 410 years. Since the spatial anomalies of snow accumulation and isotopic composition are supposed to drift with the dune, an ice core drilled in the mega-dune area would exhibit the non-climatic 410 year cycle of these two parameters. We simulated a vertical profile of snow isotopic composition with such a non-climatic variability, using the data on the dune size and velocity. This artificial profile is then compared with the real vertical profile of snow isotopic composition obtained from a core drilled in the mega-dune area. We note that the two profiles are very similar. The obtained results are discussed in terms of interpretation of data obtained from ice cores drilled beyond the mega-dune areas.
Funder
Russian Science Foundation
Publisher
Copernicus GmbH
Reference57 articles.
1. Albert, M., Shuman, C., Courville, Z., Bauer, R., Fahnestock, M., and Scambos, T.: Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a low-accumulation glazed site on the East Antarctic Plateau, Ann. Glaciol., 39, 73–78, 2004. 2. Alberti, M. and Biscaro, D.: Height variation detection in polar regions from icesat satellite altimetry, Comput. Geosci., 36, 1–9, 2010. 3. Anschütz, H., Eisen, O., Rack, W., and Scheinert, M.: Periodic surface features in coastal East Antarctica, Geophys. Res. Lett., 33, 1–5, 2006. 4. Anschütz, H., Eisen, O., Oerter, H., Steinhage, D., and Scheinert, M.: Investigating small-scale variations of the recent accumulation rate in coastal Dronning Maud Land, East Antarctica, Ann. Glaciol., 46, 14–21, 2007. 5. Arcone, S. A., Spikes, V. B., and Hamilton, G. S.: Stratigraphic variation within polar firn caused by differential accumulation and ice flow: interpretation of a 400 MHz short-pulse radar profile from West Antarctica, J. Glaciol., 51, 407–422, 2005.
|
|