Excitation of low frequency oscillations in a planetary magnetosheath by supersonic shear flow

Author:

Borisov N.,Fränz M.

Abstract

Abstract. We show that the slow magnetosonic (SM) perturbations generated in the vicinity of the magnetopause, due to the excitation of the Kelvin-Helmholtz (K.-H.) instability in the case of a supersonic flow velocity, are transformed into fast magnetosonic (FM) waves which can propagate into the magnetosheath. Under the conditions discussed in this paper, the FM wave has negative energy in the stationary (magnetospheric) coordinate frame. Due to this the outgoing FM wave increases the growth rate of the K.-H. instability excited at the magnetopause. Within the linear theory, we investigate the influence of the excited FM wave on the growth rate of the K.-H. instability. Simultaneously we predict the transformation of the SM mode into kinetic Alfvén (KA) mode. Thus, in general, two types of waves with different polarizations (the KA wave and the FM wave) should appear in the magnetosheath due to the excitation of the K.-H. instability. At the same time, the SM perturbations are only present in the localized region where the K.-H. instability is excited. To correctly describe the excitation of waves, we use two-fluid (for electrons and ions) magnetohydrodynamics. This approach is more general than the ideal magnetohydrodynamics and allows us to take into account the effects associated with the finite Larmor radius of ions. Also it can be used to investigate the K.-H. instability in a multi-component plasma, or in the case where the frequency of perturbations is of the order of the gyrofrequency of oxygen ions which may occur, for example, at the magnetosheath of Mars.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3