A two-sided approach to estimate heat transfer processes within the active layer of rock glacier Murtèl-Corvatsch

Author:

Scherler M.,Schneider S.,Hoelzle M.ORCID,Hauck C.

Abstract

Abstract. The thermal regime of permafrost in scree slopes and rock glaciers is characterized by the importance of air flow driven convective and advective heat transfer processes. These processes are supposed to be part of the energy balance in the active layer of rock glaciers leading to lower subsurface temperatures than would be expected at the lower limit of discontinues high mountain permafrost. In this study, new parameterizations were introduced in a numerical soil model to simulate permafrost temperatures observed in a borehole at rock glacier Murtèl in the Swiss Alps in the period from 1997 to 2008. A soil heat sink and source layer was implemented within the active layer which was parameterized experimentally to account for and quantify the contribution of air flow driven heat transfer on the measured permafrost temperatures. The experimental model calibration process yielded a value of about 28.9 Wm−2 for the heat sink during the period from mid September to mid January and one of 26 Wm−2 for the heat source in the period from June to mid September. Energy balance measurements, integrated over a 3.5 m thick blocky surface layer, showed seasonal deviations between a zero energy balance and the calculated sum of the energy balance components of around 6.8 Wm−2 in fall/winter, −2.2 Wm−2 in winter/spring and around −5.6 Wm−2 in summer. The calculations integrate heat exchange processes including thermal radiation between adjacent blocks, turbulent heat flux and energy storage change in the blocky surface layer. Finally, it is hypothesized that these deviations approximately equal unmeasured freezing and thawing processes within the blocky surface layer.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3