Secchi depth in the Oslofjord–Skagerrak area: theory, experiments and relationships to other quantities

Author:

Aas E.,Høkedal J.,Sørensen K.

Abstract

Abstract. The Secchi depth and its relationships to other properties of the sea water in the Oslofjord–Skagerrak area have been investigated. White and black disks of different sizes have been applied, and the Secchi depth has been observed with the naked eye, through colour filters and with a water telescope. Spectral luminances and illuminances have been calculated from recordings of radiance and irradiance, and attenuation coefficients have been determined. A theoretical expression for the Secchi depth based on luminances has been tested against field observations, and it is found that the field results for the product of Secchi depth and attenuation coefficients are on average only 4% less than the predicted value for the white disk. For the Secchi depths observed through colour filters or for the black disk, the average field results are more than 30% smaller than the theoretical estimates. The reduction in the disk diameter from 30 to 10 cm should theoretically reduce the Secchi depths by 13–22%, while the field observations show an average reduction of 10–20%. Similarly we find from theory that the removal of sun glitter should increase the Secchi depth by 12%, while the observed increase is 14% on average for the white disk. Our overall conclusion is that the theoretical expression works well for the white disk, but less so for the colour filter observations and the black disk. Statistical relationships between Secchi depths and attenuation coefficients have been determined, and it is found that the root-mean-square errors relative to the mean value are smaller for the beam attenuation coefficients (12–24%, white disk) than for the vertical attenuation coefficients (16–65%, white disk). The depth of the 1% level of surface quanta irradiance (PAR) can be estimated with a relative root-mean-square error of 23% from observations of the white Secchi depth. Similar estimates of chlorophyll a and total suspended material will have rms errors in the range 40–90%. Our conclusion becomes that the Secchi depth observation is a very useful tool for checking the value and order of magnitude of other related quantities in the Oslofjord–Skagerrak area.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3