A horizontal mobile measuring system for atmospheric quantities

Author:

Hübner J.,Olesch J.,Falke H.,Meixner F. X.ORCID,Foken T.ORCID

Abstract

Abstract. A fully automatic horizontal mobile measuring system (HMMS) for atmospheric quantities has been developed. The HMMS is based on the drive mechanism of a garden railway system and can be installed at any location and along any measuring track. In addition to meteorological quantities (temperature, humidity and short-/long-wave down/upwelling radiation), HMMS also measures trace gas concentrations (carbon dioxide and ozone). While sufficient spatial resolution is a problem even for measurements on distributed towers, this could be easily achieved with the HMMS, which has been specifically developed to obtain higher information density about horizontal gradients in a heterogeneous forest ecosystem. There, horizontal gradients of meteorological quantities and trace gases could be immense, particularly at the transition from a dense forest to an open clearing, with large impact on meteorological parameters and exchange processes. Consequently, HMMS was firstly applied during the EGER IOP3 project (ExchanGE processes in mountainous Regions – Intense Observation Period 3) in the Fichtelgebirge Mountains (SE Germany) during summer 2011. At a constant 1 m above ground, the measuring track of the HMMS consisted of a straight line perpendicular to the forest edge, starting in the dense spruce forest and leading 75 m into an open clearing. Tags with bar codes, mounted every metre on the wooden substructure, allowed (a) keeping the speed of the HMMS constant (approx. 0.5 m s−1) and (b) operation of the HMMS in a continuous back and forth running mode. During EGER IOP3, HMMS was operational for almost 250 h. Results show that – due to considerably long response times (between 4 and 20 s) of commercial temperature, humidity and the radiation sensors – true spatial variations of the meteorological quantities could not be adequately captured (mainly at the forest edge). Corresponding dynamical (spatial) errors of the measurement values were corrected on the basis of well-defined individual response times of the sensors and application of a linear correction algorithm. Due to the very short response times (≤ 1 s) of the applied commercial CO2 and O3 analysers, dynamical errors for the trace gas data were negligible and no corrections were done.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference56 articles.

1. Assmann, R.: Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft, Das Wetter, 4, 245–286, 1887.

2. Assmann, R.: Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft, Das Wetter, 5, 1–22, 1888.

3. Baldocchi, D., Hutchison, B., Matt, D., and McMillen, R.: Seasonal variations in the radiation regime within an oak-hickory forest, Agr. Forest Meteorol., 33, 177–191, https://doi.org/10.1016/0168-1923(84)90069-8, 1984a.

4. Baldocchi, D. D., Matt, D. R., Hutchison, B. A., and McMillen, R. T.: Solar radiation within an oak-hickory forest: an evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods, Agr. Forest Meteorol., 32, 307–322, https://doi.org/10.1016/0168-1923(84)90056-X, 1984b.

5. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)0822.3.CO;2, 2001.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ground-based Mobile Measurement Systems;Springer Handbook of Atmospheric Measurements;2021

2. Measurement Technique;Micrometeorology;2017

3. Forest Climate in Vertical and Horizontal Scales;Energy and Matter Fluxes of a Spruce Forest Ecosystem;2017

4. Interaction Forest–Clearing;Energy and Matter Fluxes of a Spruce Forest Ecosystem;2017

5. Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes;Energy and Matter Fluxes of a Spruce Forest Ecosystem;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3