Fitting and testing the significance of linear trends in Gumbel-distributed data

Author:

Clarke R. T.

Abstract

Abstract. The widely-used hydrological procedures for calculating events with T-year return periods from data that follow a Gumbel distribution assume that the data sequence from which the Gumbel distribution is fitted remains stationary in time. If non-stationarity is suspected, whether as a consequence of changes in land-use practices or climate, it is common practice to test the significance of trend by either of two methods: linear regression, which assumes that data in the record have a Normal distribution with mean value that possibly varies with time; or a non-parametric test such as that of Mann-Kendall, which makes no assumption about the distribution of the data. Thus, the hypothesis that the data are Gumbel-distributed is temporarily abandoned while testing for trend, but is re-adopted if the trend proves to be not significant, when events with T-year return periods are then calculated. This is illogical. The paper describes an alternative model in which the Gumbel distribution has a (possibly) time-variant mean, the time-trend in mean value being determined, for the present purpose, by a single parameter β estimated by Maximum Likelihood (ML). The large-sample variance of the ML estimate ˆβMR is compared with the variance of the trend βLR calculated by linear regression; the latter is found to be 64% greater. Simulated samples from a standard Gumbel distribution were given superimposed linear trends of different magnitudes, and the power of each of three trend-testing procedures (Maximum Likelihood, Linear Regression, and the non-parametric Mann-Kendall test) were compared. The ML test was always more powerful than either the Linear Regression or Mann-Kendall test, whatever the (positive) value of the trend β; the power of the MK test was always least, for all values of β. Keywords: Extreme value probability distribution, Gumbel distribution, statistical stationarity, trend-testing procedures

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3