Lagrangian model with heat-carrying particles

Author:

Ferrero EnricoORCID,Tenti Bianca,Alessandrini StefanoORCID

Abstract

Abstract. The dispersion of pollutants in the atmosphere, whether from industrial emissions, wildfires, or other sources, poses significant challenges to air quality management and environmental protection. Understanding the behavior of plumes is crucial for predicting their dispersion patterns and potential impacts on human health and the environment. In this work, we present a new plume rise scheme based on heat transport. The idea at the basis of the new algorithm is the same as the actual scheme embedded in the Lagrangian Particle Model SPRAY-WEB. The temperature difference between the ambient and the plume and the vertical velocity of the plume are expressed on a fixed Eulerian grid. The particles are assigned with an equivalent momentum, temperature, mass, and density, transported as scalar quantities with the particles following the Lagrangian description of the motion. This allows us to reproduce the entrainment phenomenon as a mixing of two fluids (environmental air and plume) with different temperatures: the resulting temperature is given by Richmann's law. The results obtained with the old plume rise algorithm and the new one are compared with Briggs (1975) analytical curve in the case of an idealized atmosphere with a neutral stratification and a constant horizontal wind and with experimental data. From the comparison in an ideal atmosphere, it emerged that with the new algorithm, the plume reaches a higher height than with the old one and the asymptotic trend obtained with both models follows the Briggs curve. As for the comparison with the measurements, the results obtained with the new algorithm are in better agreement with the experimental data than the old one.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3