Author:
Nehls T.,Jozefaciuk G.,Sokolowska Z.,Hajnos M.,Wessolek G.
Abstract
Abstract. We studied pavement seam material. This is the soil substrate in joints of pervious pavements in urban areas. It is mostly 1 cm thick and develops from the original seam filling by depositions of all kinds of urban residues, including anthropogenic organic substances. It was investigated, how this unique form of organic matter influences the filter properties of seam material and how the seam material influences heavy metal transport through the pavement. The seam material is characterised by a darker munsell colour, higher organic carbon content, higher surface areas, higher cation exchange capacities, but a lower fraction of high adsorption energy sites compared to the original seam filling. The deposited anthropogenic organic matter itself could be characterised as particulate and non-polar. Compared to natural soils, it has a small surface area and a low surface charge density resulting in a small cation exchange capacity of only 75 cmol(+) kg−1C. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material towards Pb is similar, towards Cd it is much smaller compared to natural soils. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb. For Cd the infiltration from ponds can lead to a displacement of Cd during only one decade.