Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses

Author:

McLagan David S.ORCID,Biester Harald,Navrátil TomasORCID,Kraemer Stephan M.,Schwab LorenzORCID

Abstract

Abstract. Trees predominantly take up mercury (Hg) from the atmosphere via stomatal assimilation of gaseous elemental Hg (GEM). Hg is oxidised in leaves/needles and transported to other tree anatomy including bole wood, where it can be stored long-term. Using Hg associated with growth rings facilitates archiving of historical GEM concentrations. Nonetheless, there are significant knowledge gaps on the cycling of Hg within trees. We investigate Hg archived in tree rings, internal tree Hg cycling, and differences in Hg uptake mechanisms in Norway spruce and European larch sampled within 1 km of a HgCl2-contaminated site using total Hg (THg) and Hg stable isotope analyses. Tree ring samples are indicative of significant increases in THg concentrations (up to 521 µg kg−1) from the background period (BGP; facility closed; 1992–present) to secondary industrial period (2ndIP; no HgCl2 wood treatment; 1962–1992) to primary industrial period (1stIP; active HgCl2 wood treatment; ≈ 1900–1962). Mass-dependent fractionation (MDF) Hg stable isotope data are shifted negative during industrial periods (δ202Hg of 1stIP: −4.32 ± 0.15 ‰, 2ndIP: −4.04 ± 0.32 ‰, BGP: −2.83 ± 0.74 ‰; 1 SD). Even accounting for a ≈ −2.6 ‰ MDF shift associated with stomatal uptake, these data are indicative of emissions derived from industrial activity being enriched in lighter isotopes associated with HgCl2 reduction and Hg0 volatilisation. Similar MDF (δ202Hg: −3.90 ± 0.30 ‰; 1 SD) in bark Hg (137 ± 105 µg kg−1) suggests that stomatal assimilation and downward transport is also the dominant uptake mechanism for bark Hg (reflective of negative stomatal-uptake MDF shift) rather than deposition to bark. THg was enriched in sapwood of all sampled trees across both tree species. This may indicate long-term storage of a fraction of Hg in sapwood or xylem solution. We also observed a small range of odd-isotope mass-independent fractionation (MIF). Differences in Δ199Hg between periods of different industrial activities were significant (Δ199Hg of 1stIP: 0.00 ± 0.03 ‰, 2ndIP: −0.06 ± 0.04 ‰, BGP: −0.13 ± 0.03 ‰; 1 SD), and we suggest MIF signatures are conserved during stomatal assimilation (reflect source MIF signatures). These data advance our understanding of the physiological processing of Hg within trees and provide critical direction to future research into the use of trees as archives for historical atmospheric Hg.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3