Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations

Author:

Leng JiyeORCID,Chen Jing M.,Li Wenyu,Luo XiangzhongORCID,Xu Mingzhu,Liu JaneORCID,Wang RongORCID,Rogers CherylORCID,Li Bolun,Yan Yulin

Abstract

Abstract. Diagnostic terrestrial biosphere models (TBMs) forced by remote sensing observations have been a principal tool for providing benchmarks on global gross primary productivity (GPP) and evapotranspiration (ET). However, these models often estimate GPP and ET at coarse daily or monthly steps, hindering analysis of ecosystem dynamics at the diurnal (hourly) scales, and prescribe some essential parameters (i.e., the Ball–Berry slope (m) and the maximum carboxylation rate at 25 °C (Vcmax25)) as constant, inducing uncertainties in the estimates of GPP and ET. In this study, we present hourly estimations of global GPP and ET datasets at a 0.25° resolution from 2001 to 2020 simulated with a widely used diagnostic TBM – the Biosphere–atmosphere Exchange Process Simulator (BEPS). We employed eddy covariance observations and machine learning approaches to derive and upscale the seasonally varied m and Vcmax25 for carbon and water fluxes. The estimated hourly GPP and ET are validated against flux observations, remote sensing, and machine learning-based estimates across multiple spatial and temporal scales. The correlation coefficients (R2) and slopes between hourly tower-measured and modeled fluxes are R2=0.83, regression slope =0.92 for GPP, and R2=0.72, regression slope =1.04 for ET. At the global scale, we estimated a global mean GPP of 137.78±3.22 Pg C yr−1 (mean ± 1 SD) with a positive trend of 0.53 Pg C yr−2 (p<0.001), and an ET of 89.03±0.82×103 km3 yr−1 with a slight positive trend of 0.10×103 km3 yr−2 (p<0.001) from 2001 to 2020. The spatial pattern of our estimates agrees well with other products, with R2=0.77–0.85 and R2=0.74–0.90 for GPP and ET, respectively. Overall, this new global hourly dataset serves as a “handshake” among process-based models, remote sensing, and the eddy covariance flux network, providing a reliable long-term estimate of global GPP and ET with diurnal patterns and facilitating studies related to ecosystem functional properties, global carbon, and water cycles. The hourly GPP and ET estimates are available at https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a) and the accumulated daily datasets are available at https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Reference97 articles.

1. Baldocchi, D.: An analytical solution for coupled leaf photosynthesis and stomatal conductance models, Tree Physiol., 14, 1069–1079, https://doi.org/10.1093/treephys/14.7-8-9.1069, 1994.

2. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteor. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082&lt;2415:FANTTS&gt;2.3.CO;2, 2001.

3. Baldocchi, D. D.: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology, Glob. Change Biol., 26, 242–260, https://doi.org/10.1111/gcb.14807, 2020.

4. Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986, edited by: Biggins, J., Springer Netherlands, Dordrecht, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987.

5. Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3