Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
-
Published:2024-03-13
Issue:3
Volume:16
Page:1283-1300
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Leng JiyeORCID, Chen Jing M., Li Wenyu, Luo XiangzhongORCID, Xu Mingzhu, Liu JaneORCID, Wang RongORCID, Rogers CherylORCID, Li Bolun, Yan Yulin
Abstract
Abstract. Diagnostic terrestrial biosphere models (TBMs) forced by remote sensing observations have been a principal tool for providing benchmarks on global gross primary productivity (GPP) and evapotranspiration (ET). However, these models often estimate GPP and ET at coarse daily or monthly steps, hindering analysis of ecosystem dynamics at the diurnal (hourly) scales, and prescribe some essential parameters (i.e., the Ball–Berry slope (m) and the maximum carboxylation rate at 25 °C (Vcmax25)) as constant, inducing uncertainties in the estimates of GPP and ET. In this study, we present hourly estimations of global GPP and ET datasets at a 0.25° resolution from 2001 to 2020 simulated with a widely used diagnostic TBM – the Biosphere–atmosphere Exchange Process Simulator (BEPS). We employed eddy covariance observations and machine learning approaches to derive and upscale the seasonally varied m and Vcmax25 for carbon and water fluxes. The estimated hourly GPP and ET are validated against flux observations, remote sensing, and machine learning-based estimates across multiple spatial and temporal scales. The correlation coefficients (R2) and slopes between hourly tower-measured and modeled fluxes are R2=0.83, regression slope =0.92 for GPP, and R2=0.72, regression slope =1.04 for ET. At the global scale, we estimated a global mean GPP of 137.78±3.22 Pg C yr−1 (mean ± 1 SD) with a positive trend of 0.53 Pg C yr−2 (p<0.001), and an ET of 89.03±0.82×103 km3 yr−1 with a slight positive trend of 0.10×103 km3 yr−2 (p<0.001) from 2001 to 2020. The spatial pattern of our estimates agrees well with other products, with R2=0.77–0.85 and R2=0.74–0.90 for GPP and ET, respectively. Overall, this new global hourly dataset serves as a “handshake” among process-based models, remote sensing, and the eddy covariance flux network, providing a reliable long-term estimate of global GPP and ET with diurnal patterns and facilitating studies related to ecosystem functional properties, global carbon, and water cycles. The hourly GPP and ET estimates are available at https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a) and the accumulated daily datasets are available at https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b).
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Copernicus GmbH
Reference97 articles.
1. Baldocchi, D.: An analytical solution for coupled leaf photosynthesis and stomatal conductance models, Tree Physiol., 14, 1069–1079, https://doi.org/10.1093/treephys/14.7-8-9.1069, 1994. 2. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteor. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 3. Baldocchi, D. D.: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology, Glob. Change Biol., 26, 242–260, https://doi.org/10.1111/gcb.14807, 2020. 4. Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 10–15 August 1986, edited by: Biggins, J., Springer Netherlands, Dordrecht, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987. 5. Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020.
|
|