A global catalogue of CO2 emissions and co-emitted species from power plants, including high-resolution vertical and temporal profiles
-
Published:2024-01-15
Issue:1
Volume:16
Page:337-373
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Guevara MarcORCID, Enciso Santiago, Tena CarlesORCID, Jorba OriolORCID, Dellaert StijnORCID, Denier van der Gon HugoORCID, Pérez García-Pando CarlosORCID
Abstract
Abstract. We present a high-resolution global emission catalogue of CO2 and co-emitted species (NOx, SO2, CO, CH4) from thermal power plants for the year 2018. The construction of the database follows a bottom-up approach, which combines plant-specific information with national energy consumption statistics and fuel-dependent emission factors for CO2 and emission ratios for co-emitted species (e.g. the amount of NOx emitted relative to CO2: NOx/CO2). The resulting catalogue contains annual emission information for more than 16 000 individual facilities at their exact geographical locations. Each facility is linked to a country- and fuel-dependent temporal profile (i.e. monthly, day of the week and hourly) and a plant-level vertical profile, which were derived from national electricity generation statistics and plume rise calculations that combine stack parameters with meteorological information. The combination of the aforementioned information allows us to derive high-resolution spatial and temporal emissions for modelling purposes. Estimated annual emissions were compared against independent plant- and country-level inventories, including Carbon Monitoring for Action (CARMA), the Global Infrastructure emission Database (GID) and the Emissions Database for Global Atmospheric Research (EDGAR), as well as officially reported emission data. Overall good agreement is observed between datasets when comparing the CO2 emissions. The main discrepancies are related to the non-inclusion of auto-producer or heat-only facilities in certain countries due to a lack of data. Larger inconsistencies are obtained when comparing emissions from co-emitted species due to uncertainties in the fuel-, country- and region-dependent emission ratios and gap-filling procedures. The temporal distribution of emissions obtained in this work was compared against traditional sector-dependent profiles that are widely used in modelling efforts. This highlighted important differences and the need to consider country dependencies when temporally distributing emissions. The resulting catalogue (https://doi.org/10.24380/0a9o-v7xe, Guevara et al., 2023) is developed in the framework of the Prototype System for a Copernicus CO2 service (CoCO2) European Union (EU)-funded project to support the development of the Copernicus CO2 Monitoring and Verification Support capacity (CO2MVS).
Funder
Horizon 2020 European Centre for Medium-Range Weather Forecasts Agencia Estatal de Investigación Ministerio de Ciencia, Innovación y Universidades AXA Research Fund European Research Council
Publisher
Copernicus GmbH
Reference106 articles.
1. ADME: The Electricity Market Administrator, https://adme.com.uy/detalleejecucionhoraria/ (last access: November 2022), 2021. 2. AEMO: Australian Energy Market Operator, http://nemweb.com.au/Data_Archive/Wholesale_Electricity/MMSDM/2021/MMSDM_2021_02/MMSDM_Historical_Data_SQLLoader/ (last access: November 2022), 2021. 3. Agustí-Panareda, A., McNorton, J., Balsamo, G., Baier, B. C., Bousserez, N., Boussetta, S., Brunner, D., Chevallier, F., Choulga, M., Diamantakis, M., Engelen, R., Flemming, J., Granier, C., Guevara, M., Denier van der Gon, H., Elguindi, N., Haussaire, J.-M., Jung, M., Janssens-Maenhout, G., Kivi, R., Massart, S., Papale, D., Parrington, M., Razinger, M., Sweeney, C., Vermeulen, A., and Walther, S.: Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement, Sci. Data, 9, 160, https://doi.org/10.1038/s41597-022-01228-2, 2022. 4. Alhajeri, N. S., Al-Fadhli, F. M., Aly, A. Z., Reimers, A., and Webber, M. E.: Electric power system profile in Kuwait: electricity and water generation, fuel consumption and cost estimation, ACS Sustain. Chem. Eng., 6, 10323–10334, 2018. 5. Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sander, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications, Environ. Model. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|