High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen

Author:

Betlem Peter,Birchall ThomasORCID,Lord Gareth,Oldfield SimonORCID,Nakken Lise,Ogata KeiORCID,Senger KimORCID

Abstract

Abstract. Structure-from-motion (SfM) photogrammetry has become an important tool for the digitalisation of outcrops as digital outcrop models (DOMs). DOMs facilitate the mapping of stratigraphy and discontinuous structures like folds, faults, and fractures from the centimetre to kilometre scale. With pristine, treeless exposures, the outcropping strata in Svalbard, Arctic Norway, hold exceptional potential for analogue studies and are ideally suited for the acquisition of high-resolution DOMs. Here, we present the acquisition, processing, and integration of the Konusdalen West digital model data set, comprising both DOM and derived digital terrain model (DTM) data. Drone-based image acquisition took place over 2 weeks in July and August 2020. The Konusdalen West DOM and DTM cover a 0.12 km2 area and span a 170 m elevation difference. The DOM covers the upper two-thirds of the mudstone-dominated Late Jurassic–Early Cretaceous Agardhfjellet Formation. The Agardhfjellet Formation and its time equivalents are regional cap rocks for CO2 sequestration and petroleum accumulations on the Norwegian Continental Shelf. A total of 15 differential GNSS control points were used to georeference and quality assure the digital data assets, 5 of which function as reference checkpoints. SfM processing of 5512 acquired images resulted in high-confidence, centimetre-scale resolution point clouds, textured mesh (DOM), tiled model, orthomosaics, and a DTM. The confidence-filtered dense cloud features an average inter-point distance of 1.57 cm and has an average point density of 3824.9 points per metre. The five checkpoints feature root mean square errors of 2.0 cm in X, 1.3 cm in Y, 5.2 cm in Z, and 5.7 cm in XYZ. Increased confidences and densities are present along the western flank of the Konusdalen West outcrop, where a fault fracture network in mudstone-dominated strata is best exposed and photographed most extensively. Top and side view orthomosaics feature maximum resolutions of 8 mm per pixel, enabling the mapping of faults, formation members, marker beds, fractures, and other sub-centimetre features. Additional structural measurements and observations were taken in June 2021 to place the data in the geological context. Data described in this paper can be accessed at Norstore under https://doi.org/10.11582/2022.00027 (Betlem, 2022b).

Funder

Norges Forskningsråd

Publisher

Copernicus GmbH

Reference81 articles.

1. Barnes, R., Gupta, S., Traxler, C., Ortner, T., Bauer, A., Hesina, G., Paar, G., Huber, B., Juhart, K., Fritz, L., Nauschnegg, B., Muller, J.-P., and Tao, Y.: Geological Analysis of Martian Rover-Derived Digital Outcrop Models Using the 3-D Visualization Tool, Planetary Robotics 3-D Viewer-PRo3D, Earth Space Sci., 5, 285–307, https://doi.org/10.1002/2018EA000374, 2018. a

2. Bergh, S. G., Braathen, A., and Andresen, A.: Interaction of Basement-Involved and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard1, AAPG Bull., 81, 637–661, https://doi.org/10.1306/522B43F7-1727-11D7-8645000102C1865D, 1997. a, b

3. Betlem, P.: Automated Metashape Package, Zenodo [code], https://doi.org/10.5281/zenodo.6448154, 2022a. a

4. Betlem, P.: Svalbox-DOM_2020-0039, Norstore [data set], https://doi.org/10.11582/2022.00027, 2022b. a, b, c, d, e

5. Betlem, P.: De-Risking Top Seal Integrity: Imaging Heterogeneity across Shale-Dominated Cap Rock Sequences, Ph.D. thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, No. 2667, ISSN 1501-7710, http://hdl.handle.net/10852/105611, 2023a. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3