SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains

Author:

Zheng KaihaoORCID,Lin PeirongORCID,Yin Ziyun

Abstract

Abstract. Floodplains are a vital part of the global riverine system. Among all the global floodplain delineation strategies empowered by remote sensing, digital elevation model (DEM)-based delineation is considered to be computationally efficient with relatively low uncertainties, but the parsimonious model struggles with incorporating the basin-level spatial heterogeneity of the hydrological and geomorphic influences into the map. In this study, we propose a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. Specifically, we develop a stepwise approach to estimate the floodplain hydraulic geometry (FHG) scaling parameters for river basins worldwide at the scale of the level-3 HydroBASINS to best respect the scaling law while approximating the spatial extent of two publicly available global flood maps derived from hydrodynamic modeling. The estimated FHG exponent exhibits a significant positive relationship with the basins' hydroclimatic conditions, particularly in 33 of the world's major river basins, indicating the ability of the approach to capture fingerprints from heterogeneous hydrological and geomorphic influences. Based on the spatially varying FHG parameters, a ∼ 90 m resolution global floodplain map named the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT) is delineated, which takes the hydrologically corrected MERIT Hydro dataset as the DEM inputs and the height above nearest drainage (HAND) as the terrain attribute. Our results demonstrate that SHIFT validates better with reference maps than both hydrodynamic-modeling- and DEM-based approaches with universal parameters. The improved delineation mainly includes better differentiation between main streams and tributaries in major basins and a more comprehensive representation of stream networks in aggregated river basins. SHIFT estimates the global floodplain area to be 9.91×106 km2, representing 6.6 % of the world's total land area. SHIFT data layers are available at two spatial resolutions (90 m and 1 km), along with the updated parameters, at https://doi.org/10.5281/zenodo.11835133 (Zheng et al., 2024). We anticipate that SHIFT will be used to support applications requiring boundary delineations of the global geomorphic floodplains.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3