Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
-
Published:2024-05-15
Issue:5
Volume:16
Page:2351-2366
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Versini Pierre-Antoine, Castellanos-Diaz Leydy Alejandra, Ramier DavidORCID, Tchiguirinskaia Ioulia
Abstract
Abstract. Nature-based solutions have appeared as relevant solutions to mitigate urban heat islands. To improve our knowledge of the assessment of this ecosystem service and the related physical processes (evapotranspiration), monitoring campaigns are required. This was the objective of several experiments carried out on the Blue Green Wave, a large green roof located in Champs-sur-Marne (France). Three different protocols were implemented and tested to assess the evapotranspiration flux at different scales: the first one was based on the surface energy balance (large scale); the second one was carried out using an evapotranspiration chamber (small scale); and the third one was based on the water balance evaluated during dry periods (point scale). In addition to these evapotranspiration estimates, several hydrometeorological variables (especially temperature) were measured. Related data and Python programs providing preliminary elements of the analysis and graphical representation have been made available. They illustrate the space–time variability in the studied processes regarding their observation scale. The dataset is available at https://doi.org/10.5281/zenodo.8064053 (Versini et al., 2023).
Funder
Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Reference45 articles.
1. Ayata, T., Tabares-Velasco, P. C., and Srebric, J.: An investigation of sensible heat fluxes at a green roof in a laboratory setup, Build. Environ., 46, 1851–1861, https://doi.org/10.1016/j.buildenv.2011.03.006, 2011. 2. Cascone, S., Catania, F., Gagliano, A., and Sciuto, G.: A comprehensive study on green roof performance for retrofitting existing buildings, Build. Environ., 136, 227–239, https://doi.org/10.1016/j.buildenv.2018.03.052, 2018. 3. Castellanos, L. A.: Deploying nature-based solutions in urban areas : thermal performance and urban feasibility across scales, Environment and Society, École des Ponts ParisTech, https://pastel.hal.science/tel-03764898 (last access: May 2024), 2022. 4. Cirkel, D. G., Voortman, B. R., Van Veen, T., and Bartholomeus, R. P.: Evaporation from (Blue-)Green Roofs: Assessing the Benefits of a Storage and Capillary Irrigation System Based on Measurements and Modeling, Water, 10, 1253, https://doi.org/10.3390/w10091253, 2018. 5. Coutts, A. M., Daly, E., Beringer, J., and Tapper, N. J.: Assessing practical measures to reduce urban heat: Green and cool roofs, Build. Environ., 70, 266–276, https://doi.org/10.1016/j.buildenv.2013.08.021, 2013.
|
|