A global forest burn severity dataset from Landsat imagery (2003–2016)
-
Published:2024-07-01
Issue:6
Volume:16
Page:3061-3081
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
He Kang,Shen Xinyi,Anagnostou Emmanouil N.
Abstract
Abstract. Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems. Over the past 2 decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a 30 m resolution global forest burn severity (GFBS) dataset of the degree of biomass consumed by fires from 2003 to 2016. To develop this dataset, we used the Global Fire Atlas product to determine when and where forest fires occurred during that period and then we overlaid the available Landsat surface reflectance products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for each burned pixel, designating the difference between them as dNBR and the relative difference as RdNBR. We compared the GFBS dataset against the Canada Landsat Burned Severity (CanLaBS) product, showing better agreement than the existing Moderate Resolution Imaging Spectrometer (MODIS)-based global burn severity dataset (MOdis burn SEVerity, MOSEV) in representing the distribution of forest burn severity over Canada. Using the in situ burn severity category data available for the 2013 wildfires in southeastern Australia, we demonstrated that GFBS could provide burn severity estimation with clearer differentiation between the high-severity and moderate-/low-severity classes, while such differentiation among the in situ burn severity classes is not captured in the MOSEV product. Using the CONUS-wide composite burn index (CBI) as a ground truth, we showed that dNBR from GFBS was more strongly correlated with CBI (r=0.63) than dNBR from MOSEV (r=0.28). RdNBR from GFBS also exhibited better agreement with CBI (r=0.56) than RdNBR from MOSEV (r=0.20). On a global scale, while the dNBR and RdNBR spatial patterns extracted by GFBS are similar to those of MOSEV, MOSEV tends to provide higher burn severity levels than GFBS. We attribute this difference to variations in reflectance values and the different spatial resolutions of the two satellites. The GFBS dataset provides a more precise and reliable assessment of burn severity than existing available datasets. These enhancements are crucial for understanding the ecological impacts of forest fires and for informing management and recovery efforts in affected regions worldwide. The GFBS dataset is freely accessible at https://doi.org/10.5281/zenodo.10037629 (He et al., 2023).
Publisher
Copernicus GmbH
Reference54 articles.
1. Abreu, R. C., Hoffmann, W. A., Vasconcelos, H. L., Pilon, N. A., Rossatto, D. R., and Durigan, G.: The biodiversity cost of carbon sequestration in tropical savanna, Sci. Adv., 3, e1701284, https://doi.org/10.1126/sciadv.1701284, 2017. 2. Addison, P. and Oommen, T.: Utilizing satellite radar remote sensing for burn severity estimation, Int. J. Appl. Earth Obs., 73, 292–299, https://doi.org/10.1016/j.jag.2018.07.002, 2018. 3. Alcaras, E., Costantino, D., Guastaferro, F., Parente, C., and Pepe, M.: Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery, Remote Sens.-Basel, 14, 1727, https://doi.org/10.3390/rs14071727, 2022. 4. Alonso-González, E. and Fernández-García, V.: MOSEV: a global burn severity database from MODIS (2000–2020), Earth Syst. Sci. Data, 13, 1925–1938, https://doi.org/10.5194/essd-13-1925-2021, 2021. 5. Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
|
|