Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS
-
Published:2014-02-10
Issue:2
Volume:7
Page:491-506
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Thorpe A. K., Frankenberg C.ORCID, Roberts D. A.
Abstract
Abstract. Two quantitative retrieval techniques were evaluated to estimate methane (CH4) enhancement in concentrated plumes using high spatial and moderate spectral resolution data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). An iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) algorithm performed well for an ocean scene containing natural CH4 emissions from the Coal Oil Point (COP) seep field near Santa Barbara, California. IMAP-DOAS retrieval precision errors are expected to equal between 0.31 to 0.61 ppm CH4 over the lowest atmospheric layer (height up to 1.04 km), corresponding to about a 30 to 60 ppm error for a 10 m thick plume. However, IMAP-DOAS results for a terrestrial scene were adversely influenced by the underlying land cover. A hybrid approach using singular value decomposition (SVD) was particularly effective for terrestrial surfaces because it could better account for spectral variability in surface reflectance. Using this approach, a CH4 plume was observed extending 0.1 km downwind of two hydrocarbon storage tanks at the Inglewood Oil Field in Los Angeles, California (USA) with a maximum near surface enhancement of 8.45 ppm above background. At COP, the distinct plume had a maximum enhancement of 2.85 ppm CH4 above background, and extended more than 1 km downwind of known seep locations. A sensitivity analysis also indicates CH4 sensitivity should be more than doubled for the next generation AVIRIS sensor (AVIRISng) due to improved spectral resolution and sampling. AVIRIS-like sensors offer the potential to better constrain emissions on local and regional scales, including sources of increasing concern like industrial point source emissions and fugitive CH4 from the oil and gas industry.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, A., Hill, D., Lamb, B. K., Miskimins, J., Sawyer, R. F., and Seinfeld, J. H.: Measurements of methane emissions at natural gas production sites in the United States, P. Natl. Acad. Sci., 110, 17768–17773, https://doi.org/10.1073/pnas.1304880110, 2013. 2. ARCTAS: Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), National Aeronautics and Space Administration (NASA), 2010. 3. Berk, A., Bernstein, L. S., and Robertson, D. C.: MODTRAN: A moderate resolution model for LOWTRAN7, AFGL-TR-89-0122, MA: Hanscom Air Force Base, 1989. 4. Bovensmann, H., Doicu, A., Stammes, P., Van Roozendael, M., von Savigny, C., Penning de Vries, M., Beirle, S., Wagner, T., Chance, K., Buchwitz, M., Kokhanovsky, A., Richter, A., Rozanov, A. V., and Rozanov, V. V.: From Radiation Fields to Atmospheric Concentrations – Retrieval of Geophysical Parameters, in: SCIAMACHY – Exploring the Changing Earth's Atmopshere, edited by: Gottwald, M. and Bovensmann, H., Springer, Dordrecht, 2011. 5. Bradley, E. S., Leifer, I., Roberts, D. A., Dennison, P. E., and Washburn, L.: Detection of marine methane emissions with AVIRIS band ratios, Geophys. Res. Lett., 38, L10702, https://doi.org/10.1029/2011GL046729, 2011.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|