A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic Oceans
Author:
Dupont F., Higginson S.ORCID, Bourdallé-Badie R., Lu Y., Roy F., Smith G. C., Lemieux J.-F.ORCID, Garric G., Davidson F.
Abstract
Abstract. As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high resolution (1/12°) ice–ocean regional model covering the North Atlantic and the Arctic oceans. The objective is to provide Canada with short-term ice–ocean predictions and hazard warnings in ice infested regions. To evaluate the modelling component (as opposed to the analysis – or data-assimilation – component), a series of hindcasts for the period 2003–2009 is carried out, forced at the surface by the Canadian Global Re-Forecasts. These hindcasts test how the model represent upper ocean characteristics and ice cover. Each hindcast implements a new aspect of the modelling or the ice–ocean coupling. Notably, the coupling to the multi-category ice model CICE is tested. The hindcast solutions are then assessed using a validation package under development, including in-situ and satellite ice and ocean observations. The conclusions are: (1) the model reproduces reasonably well the time mean, variance and skewness of sea surface height. (2) The model biases in temperature and salinity show that while the mean properties follow expectations, the Pacific Water signature in the Beaufort Sea is weaker than observed. (3) However, the modelled freshwater content of the Arctic agrees well with observational estimates. (4) The distribution and volume of the sea ice is shown to be improved in the latest hindcast thanks to modifications to the drag coefficients and to some degree as well to the ice thickness distribution available in CICE. (5) On the other hand, the model overestimates the ice drift and ice thickness in the Beaufort Gyre.
Publisher
Copernicus GmbH
Reference66 articles.
1. Amante, C. and Eakins, B. W.: ETOPO1 1-Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, Tech. rep., NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. 2. Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Tréguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Rémy, E., Talandier, C., Theetten, S., Maltrud, M. E., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. 3. Benveniste, J.: Radar altimetry: past, present and future, in: Coastal Altimetry, edited by: Vignudelli, S., Kostianoy, A., Cipolline, P., and Benveniste, J., Springer-Verlag, 1–17, https://doi.org/10.1007/978-3-642-12796-0_1, 2011. 4. Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. 5. Bouillon, S., Morales-Maqueda, M. A., Legat, V., and Fichefet, T.: An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids, Ocean Model., 27, 174–184, https://doi.org/10.1016/j.ocemod.2009.01.004, 2009.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|