P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0
-
Published:2016-11-22
Issue:11
Volume:9
Page:4209-4225
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Huang XiaomengORCID, Tang Qiang, Tseng Yuheng, Hu Yong, Baker Allison H.ORCID, Bryan Frank O., Dennis John, Fu Haohuan, Yang Guangwen
Abstract
Abstract. In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Reference61 articles.
1. Adcroft, A., Campin, J., Dutkiewicz, S., Evangelinos, C., Ferreira, D., Forget, G., Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Losch, M., Marshall, J., Maze, G., Menemenlis, D., and Molod, A.: MITgcm user manual, 1–485, available at: http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf, last access: 22 November 2016. 2. Beare, M. I. and Stevens, D. P.: Optimisation of a parallel ocean general circulation model, Ann. Geophys., 15, 1369–1377, https://doi.org/10.1007/s00585-997-1369-3, 1997. 3. Beckermann, B. and Kuijlaars, A. B. J.: Superlinear convergence of conjugate gradients, SIAM J. Numer. Anal., 39, 300–329, 2001. 4. Bell, H. E.: Gershgorin's theorem and the zeros of polynomials, Am. Math. Mon., 72, 292–295, 1965. 5. Benzi, M.: Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 418–477, 2002.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|