Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles

Author:

Fassò A.ORCID,Ignaccolo R.,Madonna F.ORCID,Demoz B. B.

Abstract

Abstract. The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN).

Publisher

Copernicus GmbH

Reference23 articles.

1. Blackmore, W. and Taubvurtzel, B.: Environmental chamber tests of NWS radiosonde relative humidity sensors, in: 15th International Conference on Interactive Information and Processing Systems, available at: http://www.ua.nws.noaa.gov/paper-1.htm, Am. Meteorol. Soc., Dallas, TX, , 2010.

2. Blackwell, K. G. and McGuirk, J. P.: Tropical upper-tropospheric dry regions from TOVS and Rawinsondes, J. Appl. Meteorol., 25, 464–481, 1996.

3. Calbet, X., Kivi, R., Tjemkes, S., Montagner, F., and Stuhlmann, R.: Matching radiative transfer models and radiosonde data from the EPS/Metop Sodankylä campaign to IASI measurements, Atmos. Meas. Tech., 4, 1177–1189, https://doi.org/10.5194/amt-4-1177-2011, 2011.

4. Chatfield, C.: The Analysis of Time Series, Chapman and Hall, London, 1995.

5. Ettinger, B., Perotto, S., and Sangalli, L. M.: Studying hemodynamic forces via spatial regression models over non-planar domains, available at: http://meetings.sis-statistica.org/index.php/sis2013/ALV/paper/viewFile/2626/307, in: Proceedings of SIS 2013, 19–21 June 2013, Advances in Latent Variables, Brescia, 2013.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterize the uncertainties in the use of radiosonde data for satellite atmospheric sounding validation;2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS);2016-07

2. Quantifying the value of redundant measurements at GRUAN sites;2014-06-23

3. Modelling collocation uncertainty of 3D atmospheric profiles;Stochastic Environmental Research and Risk Assessment;2014-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3