Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate

Author:

Banerjee Argha

Abstract

Abstract. Recent geodetic mass-balance measurements reveal similar thinning rates on glaciers with or without debris cover in the Himalaya–Karakoram region. This comes as a surprise as a thick debris cover reduces the surface melting significantly due to its insulating effects. Here we present arguments, supported by results from numerical flowline model simulations of idealised glaciers, that a competition between the changes in the surface mass-balance forcing and that of the emergence/submergence velocities can lead to similar thinning rates on these two types of glaciers. As the climate starts warming, the thinning rate on a debris-covered glacier is initially smaller than that on a similar debris-free glacier. Subsequently, the rate on the debris-covered glacier becomes comparable to and then larger than that on the debris-free one. The time evolution of glacier-averaged thinning rates after an initial warming is strongly controlled by the time variation of the corresponding emergence velocity profile.

Funder

Science and Engineering Research Board

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3