A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument

Author:

Oak Yujin J.ORCID,Jacob Daniel J.,Balasus NicholasORCID,Yang Laura H.ORCID,Chong HeesungORCID,Park JunsungORCID,Lee Hanlim,Lee Gitaek T.ORCID,Ha Eunjo S.,Park Rokjin J.ORCID,Kwon Hyeong-AhnORCID,Kim JhoonORCID

Abstract

Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020 is now providing continuous daytime hourly observations of nitrogen dioxide (NO2) columns over eastern Asia (5° S–45° N, 75–145° E) with 3.5 × 7.7 km2 pixel resolution. These data provide unique information to improve understanding of the sources, chemistry, and transport of nitrogen oxides (NOx) with implications for atmospheric chemistry and air quality, but opportunities for direct validation are very limited. Here we correct the operational level-2 (L2) NO2 vertical column densities (VCDs) from GEMS with a machine learning (ML) model to match the much sparser but more mature observations from the low Earth orbit TROPOspheric Monitoring Instrument (TROPOMI), preserving the data density of GEMS but making them consistent with TROPOMI. We first reprocess the GEMS and TROPOMI operational L2 products to use common prior vertical NO2 profiles (shape factors) from the GEOS-Chem chemical transport model. This removes a major inconsistency between the two satellite products and greatly improves their agreement with ground-based Pandora NO2 VCD data in source regions. We then apply the ML model to correct the remaining differences, Δ(GEMS–TROPOMI), using the GEMS NO2 VCDs and retrieval parameters as predictor variables. We train the ML model with colocated GEMS and TROPOMI NO2 VCDs, taking advantage of TROPOMI off-track viewing to cover the wide range of effective zenith angles (EZAs) observed by GEMS. The two most important predictor variables for Δ(GEMS–TROPOMI) are GEMS NO2 VCD and EZA. The corrected GEMS product is unbiased relative to TROPOMI and shows a diurnal variation over source regions more consistent with Pandora than the operational product.

Funder

Samsung Advanced Institute of Technology

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3