FPLUME-1.0: An integrated volcanic plume model accounting for ash aggregation
Author:
Folch A.ORCID, Costa A.ORCID, Macedonio G.ORCID
Abstract
Abstract. Eruption Source Parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1-D cross-section averaged eruption column model based on the Buoyant Plume Theory (BPT). The model accounts for plume bent over by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an "effective" grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice-versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the "effective" particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland).
Publisher
Copernicus GmbH
Reference63 articles.
1. Arason, P., Petersen, G. N., and Bjornsson, H.: Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010, Earth Syst. Sci. Data, 3, 9–17, https://doi.org/10.5194/essd-3-9-2011, 2011. 2. Arastoopour, H., Wang, C., and Weil, S.: Particle-particle interaction force in a dilute gas-solid system, Chem. Eng. Sci., 37, 1379–1386, https://doi.org/10.1016/0009-2509(82)85010-0, 1982. 3. Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., Hoskuldsson, A., and Ripepe, M.: Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations, J. Geophys. Res.-Sol. Ea., 116, 2156–2202, https://doi.org/10.1029/2011JB008462, b12202, 2011. 4. Bonasia, R., Costa, A., Folch, A., Macedonio, G., and Capra, L.: Numerical simulation of tephra transport and deposition of the 1982 El Chichón eruption and implications for hazard assessment, J. Volcanol. Geoth. Res., 231–232, 39–49, https://doi.org/10.1016/j.jvolgeores.2012.04.006, 2012. 5. Brown, R., Bonadonna, C., and Durant, A.: A review of volcanic ash aggregation, volcanic ash: an agent in Earth systems, Phys. Chem. Earth, 45–46, 65–78, https://doi.org/10.1016/j.pce.2011.11.001, 2012.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|