Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
-
Published:2021-11-23
Issue:4
Volume:12
Page:1191-1237
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Smallman Thomas LukeORCID, Milodowski David ThomasORCID, Neto Eráclito SousaORCID, Koren GerbrandORCID, Ometto JeanORCID, Williams Mathew
Abstract
Abstract. Identification of terrestrial carbon (C) sources and sinks is critical for understanding the Earth system as well as mitigating and adapting to climate
change resulting from greenhouse gas emissions. Predicting whether a given location will act as a C source or sink using terrestrial ecosystem
models (TEMs) is challenging due to net flux being the difference between far larger, spatially and temporally variable fluxes with large
uncertainties. Uncertainty in projections of future dynamics, critical for policy evaluation, has been determined using multi-TEM intercomparisons,
for various emissions scenarios. This approach quantifies structural and forcing errors. However, the role of parameter error within models has not
been determined. TEMs typically have defined parameters for specific plant functional types generated from the literature. To ascertain the
importance of parameter error in forecasts, we present a Bayesian analysis that uses data on historical and current C cycling for Brazil to
parameterise five TEMs of varied complexity with a retrieval of model error covariance at 1∘ spatial resolution. After evaluation
against data from 2001–2017, the parameterised models are simulated to 2100 under four climate change scenarios spanning the likely range
of climate projections. Using multiple models, each with per pixel parameter ensembles, we partition forecast uncertainties. Parameter
uncertainty dominates across most of Brazil when simulating future stock changes in biomass C and dead organic matter (DOM). Uncertainty
of simulated biomass change is most strongly correlated with net primary productivity allocation to wood (NPPwood) and mean
residence time of wood (MRTwood). Uncertainty of simulated DOM change is most strongly correlated with MRTsoil and
NPPwood. Due to the coupling between these variables and C stock dynamics being bi-directional, we argue that using repeat
estimates of woody biomass will provide a valuable constraint needed to refine predictions of the future carbon cycle. Finally,
evaluation of our multi-model analysis shows that wood litter contributes substantially to fire emissions, necessitating a greater
understanding of wood litter C cycling than is typically considered in large-scale TEMs.
Funder
UK Space Agency National Centre for Earth Observation Newton Fund H2020 European Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference114 articles.
1. Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 25–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007. a 2. Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020. a, b, c, d 3. Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference datasets, Glob. Change Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016. a, b, c 4. Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012. a 5. Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., and Houghton, R. A.:
Tropical forests are a net carbon source based on aboveground measurements of gain and loss,
Science,
358, 230–234, 2017.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|