Remote surface damage detection on rotor blades of operating wind turbines by means of infrared thermography

Author:

Traphan Dominik,Herráez Iván,Meinlschmidt Peter,Schlüter Friedrich,Peinke JoachimORCID,Gülker Gerd

Abstract

Abstract. Wind turbines are constantly exposed to wind gusts, dirt particles and precipitation. Depending on the site, surface defects on rotor blades emerge from the first day of operation on. While erosion increases quickly with time, even small surface defects can affect the performance of the wind turbine. Consequently, there is demand for an easily applicable remote monitoring method for rotor blades that is capable of detecting surface defects at an early stage. In this work it is investigated if infrared thermography (IRT) can meet these requirements by visualizing differences in the thermal transport and the corresponding surface temperature of the wall-bounded flow.Firstly, a validation of the IRT method compared to stereoscopic particle image velocimetry measurements is performed comparing both types of experimental results for the boundary layer of a flat plate. Then, the main characteristics of the flow in the wake of generic surface defects on different types of lifting surfaces are studied both experimentally and numerically: temperature gradients behind protruding surface defects on a flat plate and a DU 91-W2-250 profile are studied by means of IRT. The same is done with the wall shear stress from Reynolds-averaged Navier–Stokes simulations of a wind turbine blade. It is consistently observed, both in the experiments and the simulations, that turbulent wedges are formed on the flow downstream of generic surface defects. These wedges provide valuable information about the kind of defects that generate them. At last, experimental and numerical performance measures are taken into account for evaluating the aerodynamic impact of surface defects on rotor blades. We conclude that the IRT method is a suitable remote monitoring technique for detecting surface defects on wind turbines at an early stage.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3